多因子选股作为量化投资研究领域的经典模型,在海内外各类投资机构均受到广泛研究和实践应用。 在多因子模型中,决定策略收益稳健性的关键步骤正在于股票组合的权重配置。因此,从量化对冲策略追求收益稳定性的角度而言,组合权重优化对多因子模型起着至关重要的作用。
本篇报告有别于传统的多因子研究,我们并未将重点放在阿尔法因子的挖掘上,而是通过对股票组合的权重优化计算,找到了在市值中性、行业中性、风格因子中性约束下的最优投资组合,以及验证得到的组合权重是否满足了约束条件。
结构化多因子风险模型首先对收益率进行简单的线性分解,分解方程中包含四个组成部分:股票收益率、因子暴露、因子收益率和特质因
更新时间:2022-11-27 16:26
本贴主要分享东方证券金工部在Barra多因子结构风险模型上的研究思路、方法和成果,并持续更新…
下载链接:【https://pan.baidu.com/s/1ozOhYXLDTXl1zPE5jx9ytA】
Barra多因子结构风险模型投资流程入下:
![{w:100}](/
更新时间:2022-11-02 07:09
多因子模型风险预测:百尺竿头,更进一步
投资是一把双刃剑,投资者既是收益的追逐者,同时也是风险的承担者。一个好的多因子模型框架通常包含收益模型、风险模型、绩效归因三个模块,本报告聚焦多因子模型的第二大功能—风险预测。
多因子风险矩阵估计方法
采用多因子结构化风险矩阵估计时,为保证样本内外估计的一致性、增加估计结果的准确性,需要对因子协方差矩阵和特异风险矩阵的估计作如下调整:
·因子协方差矩阵估计:Newey-West 自相关调整、特征值调整、波动率偏误调整
·特异风险矩阵估计:Newey-West 自相关调整、结构化模型调整、贝叶斯收缩调整、波动率
更新时间:2022-08-31 02:39