因子挖掘

在金融领域,"因子挖掘"是一项关键的策略,通过对大量的、多样的数据集进行深入分析和挖掘,以识别出影响资产价格变动的主要驱动力。这些驱动力,或称“因子”,可以是宏观经济指标、市场情绪、企业基本面数据,或者是通过复杂算法从海量信息中提取的隐藏模式。 因子挖掘的过程需要借助先进的统计技术和计算能力,包括但不限于回归分析、机器学习、深度学习等。其目标是构建能够预测资产未来表现的模型,并为投资决策提供数据驱动的洞见。通过这种方式,投资者可以更加精准地把握市场趋势,优化投资组合,降低风险,并提高投资回报。 总的来说,因子挖掘是现代金融中一个不可或缺的工具,它结合了数据科学和金融学的精髓,帮助市场参与者做出更加明智和有效的决策。

基于OpenFE的期货因子挖掘

引言

在量化交易与数据科学领域,特征工程是一个至关重要的步骤,直接影响到模型的预测能力与效果。OpenFE 是一个开源的特征工程框架,旨在帮助研究人员和工程师快速生成高质量的特征。然而,原始版本的 OpenFE 算子虽然功能强大,但在某些应用场景下仍存在一定的局限性。为了更好地满足我们在量化研究中的需求,我对 OpenFE 算子进行了重新构建,丰富衍生特征生成;并将其与 XGBoost 相结合,用于特征重要性评估,方便后续标的打分。

本文将详细介绍这一重构过程,并通过实际案例展示如何使用这一改进后的算子生成衍生特征,并使用 XGBoost 进行特征重要性评估,从而优化我们的量化模型。

更新时间:2024-12-24 06:43

当深度学习遇上量化交易——因子挖掘篇

摘要

在深度学习的所有应用场景中,股价预测也无疑是其中一个异常诱人的场景。随着传统线性模型的潜力逐渐枯竭,非线性模型逐渐成为量化交易的主要探索方向,深度学习对非线性关系良好的拟合能力让其在量化交易中面临着广阔的应用前景。但与常规的回归预测任务不同的是,股价预测问题有其独特性,存在时间序列、噪声高、过拟合等问题。当前对于深度学习在股票交易中的研究主要侧重在因子挖掘、图神经网络与知识图谱、新闻与社交媒体等非结构化数据的利用、以及时序模型改进四个方面。我们会在文章中依次探讨近5年顶会上对这四个方向的研究。

本文主要介绍MSRA在KDD 2019上发表的两篇文章,这两篇文章主要关注深度学习在

更新时间:2024-12-05 06:16

79th Meetup

MeetUP直播答疑 时间:8月24日(周四)19:00 回放视频请访问宽客学院-双周答疑-79thMeetup

\

问题列表

**问题1:我主要使用价格K线形态来进行买入卖出依据,但是仅使用数学公式来描述形态(三角形,W,茶杯,头肩顶等)感觉比较局限,和难抓住我用眼睛能看到的内容(同样也表示这个东西比较主观)。能否我进行人工挑选,例如将我看到的:3月10日到5月7日XX股票是一个头肩底,将不同的形态打上不同的标签,找出成百上千个这样的形态作为训练集喂给AI,然后反过来让AI识别出过去历史上所有这些形态然后进行回测,不知这种做法是否可行,以及在代码模型

更新时间:2024-08-22 03:51

59th Meetup

本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb

因子挖掘

如何利用市场信息?

利用市场信息进行量化投资主要涉及以下步骤:

  1. 数据收集:首先,需要收集和整理市场数据,包括股票价格、交易量、基本面数据、新闻、宏观经济数据等。这些信息可以从各种数据供应商或公开数据源获取。
  2. 数据预处理:对收集到的数据进行清洗和预处理,处理缺失值、异常值、重复值等,保证数据的准确性和完整性。
  3. 特征工程:根据投资策略和模型需求,进行特征工程,提取有价值的特征和信号。
  4. 模型构建:选择合适的模型(如回归模型、机器学习模型、深度学习模型

更新时间:2024-06-07 10:55

如何利用滚动回测进行策略开发和因子挖掘?

问题

如何利用滚动回测进行策略开发和因子挖掘

视频

[https://www.bilibili.com/video/BV1Gr4y177FR?share_source=copy_web&vd_source=2e7dc1240ea373ea6eba1134af8dd086](https://www.bilibili.com/video/BV1Gr4y177FR?share_source=copy_web&vd_source=2

更新时间:2024-06-07 10:55

编写策略/AIStudio

简单介绍

AIStudio是BigQuant平台以AI为核心的Cloud IDE,可以用于量化投资数据分析、因子挖掘、模型训练、回测和交易以及更广泛的程序开发和AI模型开发训练等。


快速入门

启动AIStudio

点击顶部导航栏中的【编写策略】即可启动AIStudio,或点击AIStudio超链接直接跳转。

初次启动可能需要一些时间,请耐心等待。

启动过程中可以点击"签到领宽币",获得50宽币的奖励。


![加载页面](/wiki

更新时间:2024-05-22 15:05

gplearn入门

gplearn核心概念

它是一个基于Python的库,旨在通过遗传编程(Genetic Programming, GP)实现机器学习的功能。遗传编程是一种自动化的机器学习方法,通过模拟达尔文的自然选择理论来解决问题。它属于遗传算法的一种,通过选择、交叉(杂交)、变异等操作对程序(个体)进行迭代,以产生更好的解决方案。gplearn主要用于回归和符号回归任务,可以自动生成解决特定问题的数学模型或符号表达式。它的灵感来自于 scikit-learn,可以用于自动化发现数据中的关系,创建复杂的模型或因子。在金融领域,gplearn可以用于因子挖掘,帮助发现影响股票价格

更新时间:2024-05-20 03:04

【历史文档】高阶技巧-开箱实盘即用,批量测试因子的实盘策略模板

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 03:41

遗传因子

我用遗传规划 挖觉的因子 是product(return_0, 3) 还是(return_0, 3) 这个product是什么意思

\

更新时间:2023-10-09 02:22

了解AIStudio

AIStudio是BigQuant平台以AI为核心的Cloud IDE,可以用于量化投资数据分析、因子挖掘、模型训练、回测和交易,以及更广泛的程序开发和AI模型开发训练等。

/wiki/static/upload/31/315c1087-6d07-491a-90ef-43e717997077.mp4

从这里开始

关键概念

\

更新时间:2023-09-07 03:12

抽丝剥茧 去芜存菁:水晶球择时模型之 3.0 兴业证券20180926

摘要

期权作为现货的衍生产品,其交易情况暗含了投资者对市场的观点,期权交易日益活跃,可以从中获得有效且领先于现货市场的信息,兴业水晶球策略于2015年中推出,至今已有三年多样本外数据,其致力于挖掘期权市场中符合经济学逻辑且统计规律显著的因子,对期权标的现货(50ETF)进行短期的预测,无论是策略的整体表现,还是在历次市场拐点的判断上,都非常优秀。

目前上证50ETF期权的主要投资群体是通过考试的专业投资者,具有一定的前瞻性,他们对现货的未来走势预期可能相对会更加准确。如果能够充分地挖掘这部分投资者的情绪,就可以利用从期权中获得的信息对现货进行择时,这也是水晶球择时的基本逻辑。

更新时间:2022-08-31 07:31

宽邦科技受邀华泰量化研究5周年,分享《 量化选股中Al算法应用最佳实践》

人工智能在量化投资领域已有哪些应用实践?

未来发展将走向何方?

模型测试、因子挖掘、另类数据、对抗过拟合、生成对抗网络以及其他综合领域,有何前沿成果?

6月6日(周一)-6月10日(周五),“华泰人工智能量化研究5周年论坛”,2天主论坛与6场主题分论坛,连续5天,与您聊聊人工智能量化研究的前沿内容。

宽邦科技首席策略官 邵守田受邀,与您于16∶05-16∶35聊聊《 量化选股中Al算法应用最佳实践》。

参与方式:

行知App全程直播

扫描下方二维码直达 ![{w:100}{w:100}](/wiki/api/attachments.redirect?id=e5d

更新时间:2022-06-07 03:35

分页第1页
{link}