系列前期报告《高频数据应用系列研究(一)——使用高频数据跟踪核心资产的公募基金持仓变化》讨论了使用高频数据对于基金披露的持仓进行持续修正,并得到个股上公募基金持仓占比预期的方法。本文在前期研究的基础之上,探讨了公募基金持仓占比预期(后文简称公募持仓预期)在选股以及行业轮动策略中的应用。
模型跟踪表现良好。对于公募持仓占比较高的股票,个股公募持仓预期具有相对较好的拟合效果。此外,基于个股公募持仓预期,可向上合成特定行业的公募持仓预期。行业公募持仓预期样本外拟合效果同样较好。
基于个股公募持仓预期构建选股因子。在构建选股因子时,可考虑从以下两个角度出发:1)刻画个股当前预期持仓
更新时间:2025-07-24 01:34
行业轮动策略是一种量化交易策略,它依赖于在不同行业之间进行资金分配,以期捕捉市场趋势和行业表现的周期性变化。 从名字即可看出,经济周期导致任何市场状态下可能都会存在股市价格表现较好的行业,因此我们如果能布局这些行业并定期轮动调整,那会取得还不错的投资效果。
本策略是曾经在社区里的一个策略复现而来,策略链接为:
https://bigquant.com/wiki/doc/v10-uKB4qr0ITq
本文在之前的基础上有一些优化,从后文的回测结果上看出,优化后的版本效果更好,盈利水平更高。
更新时间:2025-07-01 07:55
\
更新时间:2025-07-01 07:55
m1
选股,使用 A股-基础选股 模块,剔除掉北交所以及ST的股票,下拉还可以按照申万行业、融资融券等基本条件进行筛选。![
更新时间:2025-07-01 07:55
选股:选择基础股票池
打分:对股票打分
仓位:根据打分和持股数量分配仓位
回测:设置调仓周期和买卖点等,回测查看效果
\
m1
选股,使用 A股-基础选股 模块,剔除创业板,科创板和北交所,下拉还可以按照申万行业、融资融券等基本条件进行筛选。更新时间:2025-07-01 07:55
选股:选股逻辑——选择前十大流通股东中包含社保基金的股票
打分:按照社保基金股东持股权重进行打分
仓位:根据打分和持股数量分配仓位
回测:设置调仓周期和买卖点等,回测查看效果
\
更新时间:2025-07-01 07:55
本策略是104选股策略(🌟104-选股策略)模板的具体应用。基本逻辑是股息率较高的公司能够持续支付较高的现金股息,这通常意味着这些公司拥有较为稳定和可预测的现金流。投资者通过持有这些股票,可以获得相对稳定的股息收入,这在市场不确定性较高时尤其有吸引力;此外,从价值投资角度来看,高股息率股票往往被视为被市场低估的价值股。价值投资者认为,这些股票的市场价格低于其内在价值,因此具有上升潜力。随着市场对这些股票估值的修正,除了股息收入外,投资者还可能获得资本增值;当然,股息率高可
更新时间:2025-07-01 07:55
选股:选择基础股票池
打分:对股票打分
仓位:根据打分和持股数量分配仓位
回测:设置调仓周期和买卖点等,回测查看效果
\
m1
选股,使用 A股-基础选股 模块,剔除创业板,科创板和北交所,下拉还可以按照申万行业、融资融券等基本条件进行筛选。更新时间:2025-07-01 07:55
本策略是104选股策略(🌟104-选股策略)模板的具体应用。
由于公司利润变化较大,而且依赖于会计准则、研发投入、设备更新投入等因素,难以正确反映公司的经营状况,而销售收入更加稳定,在不同的行业之中也有更好的可比性。在1984年。费雪提出了市收率因子(PS)选股方法,在费雪看来,低市收率公司存在被低估的可能。因为低市值和高销售收入都会导致这个指标的值比较小,而两者分别表示了市场还没有意识到股票的价值,以及企业的运营情况好于大家的预期情况,这一指标被广泛任务是选股的核心方
更新时间:2025-07-01 07:55
这是本系列专题研究的第五篇:基于长短期记忆网络LSTM的深度学习因子选股模型。LSTM作为改进的RNN(循环神经网络),是一种非常成熟的能够处理变化的序列数据的神经网络。此算法在keras, tensorflow上都有可以直接调用的api,在BigQuant平台中也有封装好的可视化模块。本文首先大致介绍了RNN和LSTM的原理,然后以一个可视化实例展示LSTM模型在因子选股方面的应用。
更新时间:2025-07-01 07:35
研究过集成学习中的 随机森林和XGBoost后,本文将介绍一种更传统的机器学习方法:SVM支持向量机。SVM由于其较高的准确度,并且能够解决非线性分类问题,曾一度成为非常流行的机器学习算法。本文分别介绍线性支持向量机和核支持向量机,探究SVM如何解决线性和非线性分类、回归问题,最后以一个实例展示SVM模型在选股方面的应用。
支持向量机(Supp
更新时间:2025-07-01 07:35
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-07-01 07:20
更新时间:2025-07-01 07:19
更新时间:2025-07-01 07:18
更新时间:2025-07-01 07:18
当前的股票、期货、债券、期权研究均以因子投资为主流趋势,且势头越发明显。本文所指因子分析是多因子策略、指数增强策略、多空中性策略的基石,其研究好坏直接关系和决定了策略的收益能力(信息比率),常被业内人士所称研究之重中之重,策略之核心所在。
因子分析就是因子研究员每日的基础、必备工作,大概占据了其90%的工作量,他的工作成果直接服务策略研究员,策略研究员不一定知道因子的具体细节,他也没必须不需要
更新时间:2025-04-24 03:38
更新时间:2025-04-24 03:37
更新时间:2025-04-24 03:35
更新时间:2025-04-24 03:20
更新时间:2025-03-13 02:09
买入条件:满足
更新时间:2025-03-13 02:08
由于财务公告通常在晚上发布,在财务报表公告的第二日开盘买入归属母公司股东的净利润同比增长率百分比大于30%的且降序排名靠前股票(总持仓量不超过50只);\n\n买入并持有40个交易日后,以第二日开盘价卖出;
\
{{membership}}
https://bigquant.com/codeshare/afed1970-8cc9-4e6f-95cb-8424092b3537
\
更新时间:2025-03-12 06:21
买入条件: 选择过去30个交易日内,超大单净流入占比均位于所有股票的前5%。 这些股票的涨跌幅位于同期所有股票的前5%。
卖出条件: 或股票涨跌幅跌至同期所有股票的后5%。
\
说明:克隆下方策略请前往最新开发环境3.0中运行
{{membership}}
https://bigquant.com/codeshare/2c867588-95a7-4e47-afeb-a377cbe13776
\
更新时间:2025-03-12 06:21
买入条件:
\
{{membership}}
[https://bigquant.com/codeshare/77a6ec54-de06-49b2-a46d-fdc750de5299](https://bigquant.com/codesha
更新时间:2025-03-12 06:21
回测图:
![](/wiki/api/attachments.red
更新时间:2025-03-12 06:21