更新时间:2025-02-27 02:34
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
"反转因子"通常指的是一种预测证券价格短期内可能发生逆转的因子,即预测那些最近表现较差的股票在未来会表现得较好,而最近表现较好的股票在未来会表现得较差。
更新时间:2024-06-07 10:55
\
**徐啸寅
更新时间:2024-06-07 10:55
有哪些合理的大盘风控方案?
https://www.bilibili.com/video/BV1TF41167ph?share_source=copy_web
[https://bigquant.com/experimentshare/07791ba8fc354d4e9793ce963a735263](https://bigquant.com/experimentshare/07791ba8fc354d4e9
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
\
更新时间:2024-06-07 10:55
【此文档为旧版】 相关新版文档参考:
https://bigquant.com/wiki/doc/ai-rq8QOC2fDb
https://bigquant.com/experimentshare/16571b942a8a4a92a4914c15f65d0883
\
更新时间:2024-06-07 10:55
更新时间:2024-05-21 06:30
预计算因子:直接可拿来用
链接:https://bigquant.com/wiki/doc/yinzi-b9voNK2tnq
数据源检索:具有比较丰富的数据,但需join或者其他处理才可以作为因子使用
链接:https://bigquant.com/wiki/doc/-tOnkTw9FhH#h-财报数据
\
更新时间:2023-06-06 03:07
\
更新时间:2023-05-11 03:12
• 点击新建对话,创建一个新对话
• 点击输入框,开始与QuantChat交流
• 您可以直接输入以下对话
![{w:100}](/wiki/api/attachments.redirect?id=df515aaf-cef1-460
更新时间:2023-05-04 02:33
更新时间:2022-11-20 03:34
所有量化模型都在试图捕捉市场的规律,在训练模型的过程中,不可避免需要去拟合样本内的一些场景。规律是金融市场客观存在的,还是从样本数据挖掘所得到的,是所有量化模型都需要直面的问题。高频策略和低频策略的不同特征使得策略评价层面存在差异,低频策略的有效性评判所需时间更长、难度也更大,甚至每一次投资决策的结果都可能是胜负的关键。因此低频策略的收益来源和逻辑支撑显得尤为重要。常见的低频择时策略可能在匹配资产背后的特定频谱,或存在大级别行情贡献了短期收益。
更新时间:2022-10-24 10:30
本篇报告聚焦于宏观状态的识别及其在行业轮动上的应用。报告采用量化模型结合主观逻辑的方法,并通过中观重点指标验证宏观状态,构建了宏观视角下的大类行业轮动模型。
作为行业配置的前提,我们需合理划分特征相似的大类行业板块。将不同市场行情下的收益率、ROE、营收增速等数据作为板块特征,结合K-Means、模糊C-均值聚类进行行业的聚类,通过少量逻辑调整将行业划分为周期上游、周期中游、周期下游、可选消费、一般消费、金融、科技七大板块。
我们采用经济、通胀、货币等宏
更新时间:2022-10-09 10:34
\
更新时间:2022-08-31 01:47
自2018年以来,大小盘风格的波动极为剧烈。因此,预判大小盘风格对于获取稳健的投资业绩显得尤为重要。前期研究成果表明,利率水平的变化与市场波动率是两类较为有效的大小盘风格先行指标。因此,本文基于上述两类指标构建了量化模型,预测未来1个月大盘强于小盘的概率,从而辅助大小盘风格轮动。
2018年以来模型预测得到的大盘概率持续回落,短期内小盘风格更优。为了兑现这一判断,需要选择合适的能够代表小盘风格的指数。在实际操作中,我们推荐投资者从多个角度对于备选指数进行分析,并以创业板50指数为例进行了简要讨论。
短期限利率水平变化和市场波动率对于短期大小盘风格具有明显的预测效果。使用2
更新时间:2022-08-30 10:45
行为金融一直是近几年学术领域的研究热点,而笔者作为二级市场的观察者与研究者,也一直关注与思考如何将行为金融领域中的理论或逻辑应用到投资中来。
本篇作为行为金融与量化工具结合的开篇研究,介绍笔者在量化指标研究领域的心路历程,同时以索罗斯经典的“反身性”理论与笔者常用的量能指标结合,开发出一套具备宽基指数择时能力的指标体系。
[/wiki/static/upload/ab/ab50ebf0-5f00-459a-adf8-1ae626b0d9f7.pdf](/wiki/static/upload/ab/ab50ebf0-5f00-459a-adf8-1ae626b0d
更新时间:2022-08-30 09:57
\
更新时间:2022-05-17 02:56
2021世界人工智能大会于2021年7月8日至10日在上海世博中心和上海世博展览馆同时举行。会中幻方量化合伙人徐进探讨了如何使用量化模型和深度学习在股市中赚钱的路径。
徐进提到,与传统股票定价不同,量化通过输入获取的信息,包括行情数据、上市公司财务数据,还有另类数据,比如新闻舆情、产业链等,进行模型训练,利用深度学习对股票进行定价。
在徐进看来,在这个过程中,需要处理很多关键细节,细节是魔鬼!以时间序列预测模型为例,包括数据清洗、规划处理、防止过拟合、 避免未来函数等,大量的细节决定了量化能否赚钱,并不是简简单单就能成功的。“只要你对市场、数据充分了解之后,才能得出比较好的赚很多钱的结果。
更新时间:2021-11-03 09:41
更新时间:2021-07-30 07:26
更新时间:2021-04-22 02:46