去年底至今,得益于南下资金的注入,以及经济复苏的预期,恒生综指涨幅已超过10%,低估值、高股息的优质港股吸引了全球投资者前来配臵,随着沪港通、深港通的相继开放,港股与A股的关系日益紧密,两地投资者可以更加便捷地投资对方的股市,研究因子选股模型在港股的应用能产生直接的投资收益
我们分别在恒生综指和港股通成分股内进行了7大类23个Alpha因子的有效性检验,和美股类似,估值、盈利、成长因子在港股中都比较显著,IC在3%左右,流动类因子中的Am ountAvg_1 M_3M(过去一个月日均成交额/过去三个月日均成交额)表现优异,特别是在港股通成分股当中,夏普比率最高0.99,十分稳健
在港股中我
更新时间:2025-07-24 01:31
核心观点
目的
多因子模型体系包括alpha模型、风险模型、成本控制模型、组合优化模型。组合优化模型是最终将前三个模型整合为一体,得到最优结果。本期报告的主要目的是对组合优化模型进行详细的探讨,对不同的限制条件影响组合表现的规律性进行一定程度的揭示
lamda系数
lamda系数对组合表现的影响因个股权重偏离限制的不同而不同。当个股权重偏离幅度限制较严格的情况下,lamda系数对组合表现影响几乎可以忽略,而当个股权重偏离幅度限制较宽松时,lamda系数对组合表现的影响较大
非成份股权重
非成份股权重比例的提高,在沪深300上能较明显的提高组合表现,而在中证500上的结果有待进一步验
更新时间:2025-07-24 01:30
本文挑选了著名的风险结构模型进行介绍,具体的细节并没有深入展开,旨在抛砖引玉,了解Barra对于风险结构模型的思维方式和理念。
相似的资产会有相似的回报,这是多因子模型的基本假设。由于某些特定的原因(因子),资产会表现的十分类似,例如价量变化、行业、规模或者利率变化。多因子模型就是为了发掘这些因子,并且确定收益率随因子变化的敏感程度。通常来说,多因子模型包括了宏观因子模型、基本面因子模型和统计因子模型。这几种模型在分析不同的大类资产风险收益的时候也有不同的效果。
单个资产的多因子模型可以表示成:
中首次使用布朗运动分析股票和期权的价格(Bachelier 1900)。然而由于他的观点在当时太前卫,并没有受到足够的重视。最终,Bachelier 没有获得优秀论文,而金融学的发端也没能提前半个世纪。这不禁让人感慨,Bachelier 的小失落,金融学的大遗憾。直到半个世纪之后,Bachelier 的成果才被 Paul Samuelson 发现。
时间终
更新时间:2024-06-07 10:46
更新时间:2024-05-20 10:04
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors
https://bigquant.com/wiki/doc/dai-PLSbc1SbZX
[ht
更新时间:2024-05-20 06:21
高频因子的优势:与低频因子相比,高频数据在量化选股中的优势主要体现在:因子拥挤度相对较低、因子多样性好、检验因子的独立样本多。
研究内容:本报告从四类不同的角度构建因子:日内价格相关因子、日内价量相关因子、盘前信息因子、特定时段采样因子。考察了 46 个因子周频选股的表现。
其中,日内价格相关的因子是由日内收益率的高阶统计量和日内价格形态衍生的因子;日内价量相关因子包括成交量分布以及用价量关系构建的因子;盘前信息因子主要是从开盘集合竞价信息中提炼的因子;特定时段采样因子主要是指根据一定规则筛选出重要时段,在该时段采样提取的因子,主要包括尾盘数据构建
更新时间:2024-01-31 08:52
系列报告主要专注于对多因子框架进行研究,本报告完成模型的第一步:因子组合的确定。
基于对冲的思想,将基准的因子暴露度加入组合筛选的条件之一,从而减少因子搜索的复杂度。
组合的评判标准分为三点:因子暴露度、因子相关强度和因子选个股能力,相关结论如下:
1)三大股指的市值和股本因子的偏离度均是最高的。中等偏离度的因子包括,换手率、ROE、PE、EPS因子。偏离度最小的是净利润增长率因子。
2)相关强度最低的组合为净利润增长率和成交量,换手率和EPS,ROE和换手率,股本和换手率。
3)除了换手率因子较强,净利润增长率较弱之外,其他因子的选股
更新时间:2022-12-25 08:11
模型板块包含了AI算法模型,多因子模型等一些研究内容。
更新时间:2022-12-06 14:42
挖掘因子是构建策略的第一步,有效的因子组合可以获取超额收益,而沉余琐碎因子则会让策略失效,所以搭建具有显著收益正相关性的多因子模型,是策略研究前期工作的重中之重。基本面因子以财务数据和股东数据为基础构建,如下:
1.#盈利能力因子。相较于其他盈利能力因子,CFOA在不同选股域中的有效性均较为显著,体现其对收益率较强的预测能力。同时,CFOA因子的多头组合在全市场普遍具有较高的年化收益和较低的最大回撤。
2.#成长能力因子。在全市场中,多数成长能力因子的IC检验有效性较为显著,其中业绩趋势因子(QPT)和标准化预期外净利润因子(NP_SUE1)在不同选股域中具有较强的收益预测能力。
3
更新时间:2022-11-04 03:00