回测结果

在金融领域,回测结果是对投资策略或模型在历史数据上表现的评估。它提供了一个量化的指标,展示了该策略或模型的盈利能力和风险特征。通过回测,投资者可以了解策略在不同市场环境下的表现,并据此优化模型或调整参数以改进未来实际交易的效果。回测结果的可靠性和有效性对于投资决策至关重要,但也需要谨慎对待其局限性,以免过度拟合历史数据。

条件选股:基于财报的事件驱动策略

声明:本策略仅为示例策略,可根据自己需要自行修改策略逻辑

声明:本策略需要在AIStudio 3.0环境下运行

股票提取:在财报公告日当天,筛选出净利润同比增长小于1的,并按照净利润同比增长排序

股票过滤:剔除ST、退市、非主板、上市时间小于365天的

买卖时间:开盘买入,收盘卖出

初始资金:100万

持仓票数:3

持仓周期:30天


回测图:



\

策略源码:

{{membership}}

更新时间:2025-03-12 06:21

条件选股:通过财报净利润增长率选股


由于财务公告通常在晚上发布,在财务报表公告的第二日开盘买入归属母公司股东的净利润同比增长率百分比大于30%的且降序排名靠前股票(总持仓量不超过50只);\n\n买入并持有40个交易日后,以第二日开盘价卖出;



\

策略源码:

{{membership}}

https://bigquant.com/codeshare/afed1970-8cc9-4e6f-95cb-8424092b3537

\

更新时间:2025-03-12 06:21

【历史文档】策略回测-策略回测结果指标详解

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

交割单分析

导语

如果我们手上有一份交割单是否可以对其进行模拟回测并分析呢?本文就为大家介绍一下交割单分析功能。

交割单分析功能

以下是交割单回测功能的一个demo,所用数据是通过平台上新建-可视化AI策略中的回测结果得来。

  • m4 python自定义模块的作用是将我们手中的数据文件进行一些表头和内容的格式以及文字的转换
  • m3 回测模块是将手中的交割单数据进行模拟回测
  • m1 最近N日绩效评估模块是将我们得到的交割单回测详细数据进行N日的绩效评估

通过和生成交割单的策略回测的结果进行比对,结果是一致的。大家可以根据此种方式,将自己的交割单上传到平台上进行交割单的回测以及绩效评

更新时间:2025-02-27 02:34

【历史文档】算子样例-策略区间收益

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】算子样例-策略收益分布

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

一阳穿多线策略的因子描述-滚动训练

【此文档为旧版】 相关新版文档参考:

https://bigquant.com/wiki/doc/ai-rq8QOC2fDb

策略案例

https://bigquant.com/experimentshare/16571b942a8a4a92a4914c15f65d0883

\

更新时间:2024-06-07 10:55

周线计算指标

7月30日Meetup 策略模板:

策略案例


https://bigquant.com/experimentshare/062a0182231e49f7996b0543e7acad48

\

更新时间:2024-06-07 10:55

日线策略信号进行日内择时

【旧版使用说明】此文档为旧版本,相关文档可参考:

https://bigquant.com/wiki/doc/126-KkS3pYVIAH

20210624 Meetup 策略案例

https://bigquant.com/experimentshare/f235e9ce26dc42b9ae9fb57ca6574bf1

\

更新时间:2024-06-07 10:55

如何在可视化模块上用bigtrader?

问题

如何在可视化模块上用bigtrader?

视频

8月19日Meetup模板:以双均线为例

https://www.bilibili.com/video/BV1S44y1y7dc?p=4

策略源码

[https://bigquant.com/experimentshare/b2f44f26626a4d798d2dfecdb8e75d64](https://bigquant.com/experimentshare/b2f44f26626a4d798d2dfecd

更新时间:2024-06-07 10:55

上涨和下跌预测的stockranker模型组合(买入)

【旧版说明】此文档为旧版,相关新版文档可参考:🌟102-第一个AI策略

https://bigquant.com/experimentshare/1c44e0bf56db424d8f2a5e617759a300

\

更新时间:2024-06-07 10:55

回测结果是什么意思及怎么解读

回测结果是基于历史数据对某一投资策略进行模拟交易后得到的结果。进行回测的目的是为了评估一个投资策略的盈利能力、风险水平以及其他相关指标。

回测结果中通常包括不同时间段的投资收益率、最大回撤、胜率等指标。这些结果可以帮助投资者了解该策略的优势和不足,从而进行调整和优化。

基本概念

回测结果通常包含多个方面的信息,主要包括:

  1. 总收益率:在策略回测期间,总收益率作为盈利或亏损的总体百

更新时间:2024-06-07 10:48

基金双均线策略

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


以双均线策略为例,采用新的DataSource接口实现基金数据的读取及策略回测

[https://bigquant.com/experimentshare/ac13b3c580cd4f06ad2cce26dd718ecc](https://bigquant.com/experimentshare/ac13b3c580cd4f06ad2cce2

更新时间:2024-05-20 06:13

指定低于开盘价2%买入的双均线策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,相关策略请参考以下链接:

https://bigquant.com/wiki/doc/124-exuI9VGX1a

https://bigquant.com/wiki/doc/5z66yer5ym5z2h57q562w55wl-F6yoWKprOq


本策略主要分享如何以指定

更新时间:2024-05-17 10:21

业绩景气度视角下的行业轮动策略-渤海证券-20210930

摘要

行业轮动是一个热门议题。本报告将从正式财报、业绩预告和业绩快报中,选取一些业绩指标来构建行业景气度,以实现对行业景气状态的定量判定,从而开展微观层面的行业轮动策略研究。

通过正式财务报告中一些业绩数据来构建单项景气度指标。从回测结果来看,整体上正式财务报告的业绩指标的行业选择能力较好,选定指标都能获得高于基准的收益。其中单季度归母净利润同比增长率的增速指标的回测年化收益率相对较高,超过行业基准3%以上,而且其回测结果相对基准胜率超过60%。

对所构建的行业复合景气度指标进行测试。可以看出,复合景气度策略相比单个指标景气度策略有了较好的表现。多头组合的年化收益率为12.95%(

更新时间:2023-06-13 06:53

上下影线,蜡烛好还是威廉好?-东吴证券-20200619

摘要

前言

本篇报告为东吴金工“技术分析拥抱选股因子”系列研究第二篇,延续了“将技术分析的方法应用于构建选股因子”的研究理念,从经典的蜡烛图上下影线入手,逐步探索了上下影线中蕴藏的选股信号。

蜡烛上下影线选股因子

根据蜡烛图上、下影线的定义,构造选股因子。回测结果显示,基于蜡烛图上影线构建的因子具有不错的选股能力,而蜡烛图下影线因子的选股能力较差。其中,蜡烛图上影线的标准差因子“蜡烛上_std”效果最好,在全样本内年化ICIR为-1.78,5分组多空对冲的信息比率为1.64,月度胜率为68.38%。

威廉指标对蜡烛图的修正

除了蜡烛图上下影线,威廉指标

更新时间:2023-06-13 06:53

因子重要or模型重要

作者:神乐(shen1,colol)

去量化基金公司面试,和从事量化的朋友,同事之间交流等经常会被问到一个问题,因子重要or模型重要?量化策略中最重要的是什么?有些人会认为因子比较重要,有些会认为策略的猜想比较重要。当然,关于这些问题没有标准答案,给出合理的解释,讲述对量化开发的个人观点是问题的本质。鄙人认为,一个稳健的量化策略的核心是一个合理的工业化量化策略开发体系,这也比较好的解释了某些量化公司部分核心策略工程师的离开,对公司的业绩产生影响不是特别大。工业化的量化策略开发体系包括但不限于以下流程。

5.1提出猜想:猜想的提出往往是在交易市场中对交易策略的深刻理解,从而提出相关想法,并

更新时间:2022-10-15 16:30

商品期货CTA专题报告:库存基本面与动量技术面共振的投资策略 天风证券_20180105

摘要

库存基本面策略收益可观但回撤较大库存作为商品基本面信息中最重要的指标之一,具有未来价格走势的指向性作用。根据库存理论所蕴含的策略逻辑:做多库存偏低的品种、做空库存偏高的品种,我们引入库存偏离度作为库存偏离自趋势的量化指标,在横截面上构建多空中性策略。回测结果显示,当排序期(即移动平均窗口长度)为40-70个交易日时,策略表现较稳健,且受持仓期敏感性低,年化收益率大多在11%左右,夏普比率1左右,但Calmar比率均小于1。单纯依靠库存基本面信号的Stock策略仍存在较大回撤。

动量技术面策略波动大且参数依赖性强根据动量策略逻辑:做多高历史收益的品种、做空低历史收益的品种,我们同

更新时间:2022-09-01 13:58

人工智能系列之十:宏观周期指标应用于随机森林选股 华泰证券_20180320_

摘要

将周期三因子引入随机森林模型中构建带有因子择时效应的选股策略本报告中,我们将多因子截面数据和华泰周期三因子进行合并,构建了因子择时+选股一体化的随机森林模型。周期三因子在随机森林模型中起到了状态切换的作用,不同状态下对应不同的截面因子选股逻辑。加入周期三因子的随机森林模型能获得更好的回测结果,本质上利用了周期因子的两个效应:(1)在周期因子取值单调的训练期内,模型侧重于遵循离当前更近的截面期样本的投资逻辑。(2)在周期因子取值非单调的训练期内(即拐点处),模型能够利用到周期因子在拐点处所带来的增量信息。 加入周期三因子的随机森林模型选股表现有稳定的提升加入了周期三因子的随机森林模

更新时间:2022-07-29 05:54

商品期货CTA专题报告(四):库存基本面与动量技术面共振的投资策略 天风证券_20180105

摘要

库存基本面策略收益可观但回撤较大库存作为商品基本面信息中最重要的指标之一,具有未来价格走势的指向性作用。根据库存理论所蕴含的策略逻辑:做多库存偏低的品种、做空库存偏高的品种,我们引入库存偏离度作为库存偏离自趋势的量化指标,在横截面上构建多空中性策略。回测结果显示,当排序期(即移动平均窗口长度)为40-70个交易日时,策略表现较稳健,且受持仓期敏感性低,年化收益率大多在11%左右,夏普比率1左右,但Calmar比率均小于1。单纯依靠库存基本面信号的Stock策略仍存在较大回撤。

动量技术面策略波动大且参数依赖性强根据动量策略逻辑:做多高历史收益的品种、做空低历史收益的品种,我们同样

更新时间:2022-07-29 03:23

行业内选股系列研究之一:量化选股因子整体失效了 中泰证券_20180316

研究报告

本报告在采用更合理的中泰行业划分和剔除微型股(主要受壳价值驱动)之后,从估值、盈利、成长、技术和一致预期五大类因子构建行业内选股模型,取得了稳健样本内和样本外(16年至18年2月)的回测结果。从行业内选股因子的效果来看,2017年仅部分技术类因子失效,其他类因子效果并没有发生颠覆性变化。

量化行业内选股理论分析

相对全市场的量化选股模型,行业内选股可以避免了行业间固有差异的影响,提升因子的可比性,而各行业可能存在独特的数据源能贡献新的alpha。尽管行业内样本数的不足造成统计意义的下降以及消除行业偏离后造成整体有所下降,但我们可以通过基本面逻辑和行业配置模型来补充。

更新时间:2022-07-25 08:32

DeepAlpha-DNN VS Lightgbm 实践报告

作者:dkl297836

策略思想

基于32个短期价量因子,训练集使用2016年1月1日至2020年12月31日共5年数据,每个交易日买入模型当日预测结果排名靠前的10只A股股票,个股最大仓位限制为20%,持股时间设置为5个交易日,初始资金100万。

Lightgbm策略

原有策略是基于Lightgbm机器学习算法,该策略的表现见图1:

![图 1:lightgbm-2021年1月1日至2022年6月10日回测结果{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}](/wiki/api/attachment

更新时间:2022-06-20 07:57

分页第1页
{link}