回测

回测在金融领域是一种重要的验证和评估策略性能的技术手段。它主要通过在历史数据上模拟投资策略的执行过程,以此检验该策略在过去时间段内的盈利能力和风险水平。回测不仅能够帮助投资者理解策略在不同市场环境下的表现,还能揭示策略的潜在风险和优化方向。有效的回测是金融决策过程中不可或缺的一部分,它增加了投资者对未来策略实施的信心,并为持续改进和优化投资策略提供了依据。

了解AIStudio

AIStudio是BigQuant平台以AI为核心的Cloud IDE,可以用于量化投资数据分析、因子挖掘、模型训练、回测和交易,以及更广泛的程序开发和AI模型开发训练等。

/wiki/static/upload/31/315c1087-6d07-491a-90ef-43e717997077.mp4

从这里开始

关键概念

\

更新时间:2025-04-24 03:34

策略运行与撮合说明

回测代码的编写和运行

策略逻辑编写完成后通过接口函数 M.hftrade (也是一个可视化模块的入口)来进行回测,如下是此函数的详细说明

M.hftrade.v2( #v2表示hftrade的版本号
    start_date,    #回测开始日期
    end_date,  #回测结束日期
    instruments=None,  #回测股票/基金/期货列表
    initialize=None,   #初始化函数初始化函数,initialize(context)
    on_stop=None,  #策略运行结束处理函数,on_stop(con

更新时间:2025-04-24 03:34

深度学习的模型固化

由于深度学习中牵扯到Dropout和随机种子等多处随机项,因此如果无法固化模型,当缓存丢失后会模拟交易/回测会触发重新训练,导致模型变化,本帖介绍固化已有的模型的步骤。

第一步,调试策略

好的策略应该经过多次训练查看模型的回测效果稳定性,如果发现同样参数下多次训练模型得到的回测结果变动范围较大,多半是模型不稳定。模型稳定后可以考虑固化模型并开启模拟交易。

第二步,记录模型文件到userlib文件夹

以上图DNN模型为例,

更新时间:2025-04-24 03:34

整百下单的一个例子

在默认的AI策略里,交易股数并不是整百,这和实际交易确实有一些不同。之所以这样做,是因为回测主要是验证思想,不想让资金管理、风险控制影响最初的策略思想。

但是,用户是可以手动修改代码,达到整百下单的目的的。

具体方法是修改handle_data函数里交易接口API,同时修改回测类型为:真实价格回测。相关文档可以参考:回测与交易引擎。具体要修改的位置为回测模块trade中的主函数,截图如下: ![image|572x355](/community/upload

更新时间:2025-04-24 03:34

AI选股策略_概念过滤

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-04-24 03:20

设置交易费率和价格

导语

AI量化策略开发第六步:回测教程中,我们介绍了Trade回测/模拟交易模块的重要函数和策略构建的基本流程,本文主要介绍如何在Trade模块中设置手续费和滑点。

在评估策略的时候,我们设置一定的交易手续费和滑点以模拟真实交易。在策略编写中,我们通常在回测模块的初始化函数中进行设置。

设置手续费

通过调用set_commission方法,在初始化函数中加入如下代码块实现相应的功能: 股票,按成交金额百分比设置手续费,手续费不足5元按5元收取

# 示例代码1
def initialize(co

更新时间:2025-04-24 03:20

R-Breaker日内策略-期货分钟

https://bigquant.com/experimentshare/3e5c4533c9fa4174a16f8784bccfb69b

\

更新时间:2025-04-24 03:20

深度学习的模型固化

导语

由于深度学习中牵扯到Dropout和随机种子等多处随机项,因此如果无法固化模型,当缓存丢失后会模拟交易/回测会触发重新训练,导致模型变化,本帖介绍固化已有的模型的步骤。

如何固化模型

调试策略

第一步,调试策略

好的策略应该经过多次训练查看模型的回测效果稳定性,如果发现同样参数下多次训练模型得到的回测结果变动范围较大,多半是模型不稳定。模型稳定后可以考虑固化模型并开启模拟交易。

记录模型文件

第二步,记录模型文件到userlib文件夹

![](/wiki/api/attachments.redirect?id=43e5c6bc-0a87-48

更新时间:2025-04-24 03:20

回测如何设置手续费和保证金率

回测如何设置手续费和保证金率

可以在Initial函数中通过context的set_commission设置

def initialize(context):
    """初始化"""
    print("initialize")    

    # 股票设置费率的示例
    context.set_commission(equities_commission=PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5.0))    

    # 期货设置费率的示例
    comm_dict = {

更新时间:2025-04-24 03:20

QuantChat-小白如何学习量化投资

• 点击新建对话,创建一个新对话


{w:100}


• 点击输入框,开始与QuantChat交流


{w:100}


• 您可以直接输入以下对话


![{w:100}](/wiki/api/attachments.redirect?id=df515aaf-cef1-460

更新时间:2025-04-24 03:19

零基础《AI挑战虚拟股票预测大赛》入门教程

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-04-21 01:58

滚动训练策略框架

{{membership}}


一个简单封装的机器学习滚动的策略框架~可以方便的使用机器学习滚动训练回测~  \n可以在py文件内修改实际使用的模型,把mod2.py放在目录下, 直接import mod2 from mod2   配置一下config就可以一键进行机器学习滚动训练并看到回测了\n

https://bigquant.com/codesharev3/f76dfca2-cbba-44bd-a183-bd10f26619fb


\

更新时间:2025-04-21 01:52

条件选股:PE+成交量选股

  • 声        明:本策略仅为示例策略,可根据自己需要自行修改策略逻辑
  • 交易逻辑:每隔30个交易日,以开盘价买入当日0<PB<1.5且0<PE<15且有成交量较前一日放大1.5~2.5倍的股票;
  • 每隔30个交易日,将不符合上述标准的持仓股票在第二天以收盘价卖出。
  • 股票过滤:换手率小于20%,过滤ST,过滤北交所,过滤科创版,上市天数大于270天,市盈率小于50
  • 排序规则:按照换手率从大到小
  • 买卖时间:开盘买入,收盘卖出
  • 初始资金:100万
  • 持仓票数:5
  • 持仓周期:1天


回测图:

![](/wiki/api/attachments.red

更新时间:2025-03-12 06:21

单因子策略:60日收盘均价比今日收盘价

单因子策略-60日收盘价均价比今日收盘价


回测图:


{{membership}}

策略源码:


https://bigquant.com/codeshare/0039ff8f-7d74-41a7-a97b-9a0586ada8a5

\

更新时间:2025-03-12 06:21

单因子策略:250日换手率之和


回测图:

\

策略源码:

声明:本策略需要在AIStudio 3.0环境下运行(点击克隆之后-选择最新环境)

{{membership}}

[https://bigquant.com/codeshare/f4d50c8c-dc68-44e2-89ef-e91c72ad01f4](https://bigquant.com/codeshare/f4d50c8c-dc68-44e2-89ef-e91c72ad01

更新时间:2025-03-12 06:21

单因子策略:120日换手率之和

单因子策略:120日换手率之和


回测图:


\

策略源码:

{{membership}}

https://bigquant.com/codeshare/54d502d3-8cd7-45f4-97a5-55b912da0ef3

\

更新时间:2025-03-12 06:21

【历史文档】高阶技巧-如何在模拟中使用持久化变量

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略-回测研究

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

设置回测基准期货案例

策略案例


https://bigquant.com/experimentshare/05c39d35fc4542cc9fc763d812220af9

\

更新时间:2025-02-27 02:34

【历史文档】策略回测-日频回测(Trade)

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略-实盘操作文档

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略示例-StockRanker模型结果解读

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

基金双均线策略


https://bigquant.com/experimentshare/674ea5c045844e0fa032173cbc230f4e

\

更新时间:2025-02-27 02:34

【历史文档】策略示例-基金智能策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

在AI策略中使用滚动训练

导语

为了能更简单、更灵活同时在回测和实盘模拟中无缝支持滚动训练和模型自动更新,我们增加了滚动运行支持,并优化了相应模块。

如何增加滚动训练支持

使用模板新建一个策略:策略 > 新建 > 可视化AI策略

如下三步即可增加滚动训练支持:

  1. 添加滚动运行配置模块: ![](/wiki/api/attachments.redirect?id=94b246f8-ac6e-453d-bb62-e0325553

更新时间:2025-02-27 02:34

分页第1页第2页第3页
{link}