回测

回测在金融领域是一种重要的验证和评估策略性能的技术手段。它主要通过在历史数据上模拟投资策略的执行过程,以此检验该策略在过去时间段内的盈利能力和风险水平。回测不仅能够帮助投资者理解策略在不同市场环境下的表现,还能揭示策略的潜在风险和优化方向。有效的回测是金融决策过程中不可或缺的一部分,它增加了投资者对未来策略实施的信心,并为持续改进和优化投资策略提供了依据。

设置交易费率和价格

导语

AI量化策略开发第六步:回测教程中,我们介绍了Trade回测/模拟交易模块的重要函数和策略构建的基本流程,本文主要介绍如何在Trade模块中设置手续费和滑点。

在评估策略的时候,我们设置一定的交易手续费和滑点以模拟真实交易。在策略编写中,我们通常在回测模块的初始化函数中进行设置。

设置手续费

通过调用set_commission方法,在初始化函数中加入如下代码块实现相应的功能: 股票,按成交金额百分比设置手续费,手续费不足5元按5元收取

# 示例代码1
def initialize(co

更新时间:2021-11-19 10:42

深度学习的模型固化

导语

由于深度学习中牵扯到Dropout和随机种子等多处随机项,因此如果无法固化模型,当缓存丢失后会模拟交易/回测会触发重新训练,导致模型变化,本帖介绍固化已有的模型的步骤。

如何固化模型

调试策略

第一步,调试策略

好的策略应该经过多次训练查看模型的回测效果稳定性,如果发现同样参数下多次训练模型得到的回测结果变动范围较大,多半是模型不稳定。模型稳定后可以考虑固化模型并开启模拟交易。

记录模型文件

第二步,记录模型文件到userlib文件夹

![](/wiki/api/attachments.redirect?id=43e5c6bc-0a87-48

更新时间:2021-11-19 10:42

深度学习的模型固化

由于深度学习中牵扯到Dropout和随机种子等多处随机项,因此如果无法固化模型,当缓存丢失后会模拟交易/回测会触发重新训练,导致模型变化,本帖介绍固化已有的模型的步骤。

第一步,调试策略

好的策略应该经过多次训练查看模型的回测效果稳定性,如果发现同样参数下多次训练模型得到的回测结果变动范围较大,多半是模型不稳定。模型稳定后可以考虑固化模型并开启模拟交易。

第二步,记录模型文件到userlib文件夹

以上图DNN模型为例,

更新时间:2021-11-19 10:42

CTA程序化交易实务研究之六:基于机器学习的订单簿高频交易策略-民生-131211

/wiki/static/upload/7e/7e6629bc-ac8d-42ad-85a0-c74ecff7229b.pdf

\

更新时间:2021-11-12 11:39

《风从海外来 海外AI量化最新前沿》Deep Alpha 海内外最佳实践探索研讨会文字实录

主题:The Impact of AI to Global Asset Managers: The Responses and Adoptions

演讲人:关子敬 先生 Kevin Kwan 彭博亚太区量化及数据科学专家

{w:100}{w:100}谢谢Big Quant的邀请,今天所有策略的绩效仅作交流的用途展示概念,投资人如果对策略本身有兴趣的话,请在我们网站下载白皮书或是与我们的客户经理联系。

1全球资产管理报告 AUM升高 收

更新时间:2021-09-29 03:51

自动交易如何增加交易利润?


作者:Harry Nicholls编译:caoxiyang


导语

你有没有想过如何使你的交易策略自动化并增加交易利润?在本文中,我们将介绍算法交易的基本知识,好处和风险。准备好开始自动交易吧! 很多技术分析都涉及观察信号指标,然后根据信号进行交易。正如我在之前的文章“一个让优秀交易者高于其他交易者的行为”中所讨论的那样,你应该在你的交易日志中记录下你所有的交易,当你获得更多的经验时,你应

更新时间:2021-08-24 05:46

确保回测和仿真一致的方案

https://bigquant.com/experimentshare/b8594b8ef8b84fc1bf0a4a3433e0767d

\

更新时间:2021-08-24 05:46

定时函数问题


schedule_function(func, date_rule, time_rule)中timerule的every_minute 是否在回测,模拟盘和实盘中都生效,都是指当日的 刚过去的1分钟 ,还是说只在回测生效?


https://bigquant.com/experimentshare/21cd4bdf097e4a51aac597bf5da071d2

\

更新时间:2021-08-20 11:03

lightGBM_AI选股

https://bigquant.com/experimentshare/2fbb2629dcb0450bbf72e224835b4957

\

更新时间:2021-07-30 09:11

用线性随机梯度下降-回归算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/7dcb3fe1da07466aa334e3c202a7704f

\

更新时间:2021-07-30 08:12

可视化均线金叉死叉策略

策略案例

https://bigquant.com/experimentshare/10ddc26e7b674144ab9e3738b63010a1

\

更新时间:2021-07-30 08:05

用线性-分类算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/5c5e31cf67c94de099b00aeab9676e48

\

更新时间:2021-07-30 07:26

使用bigexpr表达式引擎开发AI策略

策略案例

https://bigquant.com/experimentshare/05251c753111424eaff32648838ac24f

\

更新时间:2021-07-30 07:26

Transformer在量化选股中的应用

一、基于时间嵌入的方法

原文链接:https://towardsdatascience.com/stock-predictions-with-state-of-the-art-transformer-and-time-embeddings-3a4485237de6

当前应用于NLP领域的Transformer,结构过于庞大,并不适用于股票数据(开盘价,收盘价,最高价,最低价,等)这样的时序数据,因此,本文提出一种简化的适用于股票数据的Transformer结构,其根据时间嵌入的思想构建,能很好的应用于量化选股中。下面以一个例子来介绍用于股票数据的Transformer体系结构,以及

更新时间:2021-02-03 07:05

分页第1页第2页第3页第4页第5页第6页第7页第8页
{link}