\
更新时间:2025-04-24 03:19
{{use_style}}
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
[https://bigquant.com/wiki/doc/demos-ecdRvuM1TU](https://bigquant.com/wiki/doc/demos-ecd
更新时间:2025-04-21 01:52
本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:
https://bigquant.com/wiki/doc/seaborn-ISwoff0l23
本文是基于StackAbuse的一篇讲解Seaborn的文章上编写。 附示例及实现代码,可直接前往文末一键克隆代码进行实
更新时间:2025-03-12 05:45
当用户训练出具有一定意义的深度学习模型的时候,把训练得到的模型固化到本地可以方便以后的调用,关于如何固化深度学习模型,请移步这里,一般来说,固化深度学习模型是为了节省下一次训练重跑的时间,除此之外,被固化的模型还具有更复杂的使用方法。
本篇文章主要目的是为了讲述如何在一个自定义Python模块去调取被固化的深度学习模型,并且使用这些模型去做预测。需要注意的是,调取模型和做预测这两个流程都将在自定义Python中实现,不需要再新建其他的模块。
更新时间:2025-02-27 02:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
首先通过爬虫爬取公募基金公布的仓位,我们以招商基金的沪深300指数增强基金为例(代码004190)获取该基金的2018年二季度公布的个股持仓比例,代码实现如下:
import re
import requests
import json
df1=pd.DataFrame()
url = "http://fundf10.eastmoney.com/FundArchivesDatas.aspx?type=jjcc&code=004190&topline=10&year=&month=6&rt=0.66322259
更新时间:2024-06-11 02:52
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors
https://bigquant.com/wiki/doc/dai-PLSbc1SbZX
[http
更新时间:2024-06-07 10:55
\
**徐啸寅
更新时间:2024-06-07 10:55
{{membership}}
https://bigquant.com/codeshare/3ca8301b-8f1d-40ee-885e-3c79f50de068
[https://bigquant.com/codeshare/7720fa73-2034-40ea-a94f-f59a56dd53a0](https://bigquant.com/codeshare/7720fa73-2034-40ea-a94
更新时间:2024-06-07 10:55
import dai
import statsmodels.api as sm
import pandas as pd
factors = dai.query("""
pragma enable_pushdown_window;
select a.date, a.instrument, a.total_market_cap, b.returns
from cn_stock_factors AS a
INNER JOIN (
SELECT date, instrument, m_lag(close,-1)/close - 1
更新时间:2024-06-07 10:55
import pandas as pd
import numpy as np
import warnings
import empyrical
import dai
import bigcharts
warnings.filterwarnings('ignore')
from biglearning.api import tools as T
print('导入包完成!')
params = {'gr
更新时间:2023-08-21 11:08
python究竟怎么可以获取level2行情呢?比如百度、新浪、搜狐、CSDN等都有教程还有说明,同时还有提供一些常见的股票L2接口,包括许多模拟股票交易系统也提供了数据,但这些获取股票数据的方法并不像通过python那样方便。那么,如何通过python实现股票L2接口呢?
以下有两种情况说明:
(1)你有自己的证券商及客服专员;
在这种情况下,个人直接打电话给交易账户的证券期货供应商客户服务专员,获取CTP数据接口信息。CTP是指根据要求,进入期货公司的交易程序必须经过穿戴认证。简单地说,它是在期货公司提供的模拟环境中完成指定
更新时间:2022-12-08 05:44
现在几乎每个券商都可以为其客户提供L2实时数据市场,比如华泰的insight、中泰的XTP、兴业的UT等。一个私募可以同时接收几家券商的L2。而且很多期货公司也提供证券L2市场,所以有很多证券公司和期货公司转发的L2行情数据。
可以登录深圳证券交易所的官方网站,该网站列出了哪些公司获得了L2市场授权(非显示)。然而,基本上需要客户服务器托管机房,当然,也不排除一些互联网订阅市场。
然后是信息服务提供商,也就是专门从事市场数据的公司。他们最大的特点是互联网订阅行情。现在
更新时间:2022-12-07 07:37
国内量化交易起步较晚,大约15年开始,20年开始爆发,21年量化私募规模飙升。由于容量过大,出现了一个头部量化私募中性策略导致大幅回调的问题。对于a股来说,量化交易仍然是一种相对较新的投资方式。自20年以来,监管已经关闭了证券公司的外部接口。因此,如果你想进行定量交易,你必须使用证券公司的level2行情接口和交易接口。今天,我将与大家分享如何一站式解决不同的定量交易需求。https://gitee.com/l2gogogo
自编程AI量化交易
解决方案:AI量化交易策略终端
简介:
极速交易策略终端是一款基于python语言的策略交易平台 , 是活跃交易者策略研究 、 自动化交易
更新时间:2022-12-01 05:46
def bigquant_run(input_1, input_2, input_3):
import requests
response = requests.post(
"https://www.f2pool.com/coins",
data={"sort_by": "output24h", "sort_type": "desc"}
)
data = res
更新时间:2022-11-20 03:34
本文是TensorFlow实现流行机器学习算法的教程汇集,目标是让读者可以轻松通过清晰简明的案例深入了解 TensorFlow。这些案例适合那些想要实现一些 TensorFlow 案例的初学者。本教程包含还包含笔记和带有注解的代码。
最好的学习就是不断的实践,推荐 BigQuant 人工智能量化投资 一站式的python+机器学习+量化投资平台,打开浏览器就可以使用投资数据和机器学习算法。
更新时间:2022-11-20 03:34
更新时间:2022-10-18 01:06
参考 https://wesmckinney.com/book/ 编写 Python For Quants - 用于量化投资的Python
更新时间:2022-10-10 01:02
核心技术
Web应用的优势
使用更轻便,不需要下载客户端
可跨平台使用,降低了使用门槛
可以更快速的发布修改后的版本
\
[/wiki/static/upload/2f/2f92d0c4-a4a9-4161-b348-2d4dabebb146.pdf](/wiki/static/upload/2f/2f92d0c4-a4a9-41
更新时间:2022-08-31 08:40
本文主要介绍了python基础、爬虫、与数据库交互、调用机器学习、深度学习、NLP等。分别介绍了各个模块的安装,环境的搭建等。并且以机器学习选股为例,把各个模块连贯起来,核心代码基本都有详尽的解释。
大数据AI时代,python无往不胜的包装能力、可组合性、可嵌入性都很好,可以把各种复杂性包装在Python模块里,非常友好的供调用。Python资源丰富,深度学习如keras,机器学习如sk-learn,科学计算如numpy、,自然语言处理如jieba等。Python将极大提高工作效率无论是科学计算,还是图形界面显示;无论是机器学习还是深度学习;无论是操作e
更新时间:2022-07-29 05:23
尊敬的Quant:
量化使用最多的语言是什么?python还是C?工资差别有多大?
畅想未来3年的量化,大家能想到哪些关键词?这些关键词是否就是未来照进现在?
AI算法在使用哪些场景?市场模式识别、收益率预测、交易执行各是什么算法在驱动创新?
宽度、弹性、深度、集中度,高频数据最关注哪些盘口变化?
这一次我们提前设问,邀请您参与《2022年中国量化投资白皮书》问卷调研https://www.wjx.cn/vj/P3OsjQj.aspx,提前锁定电子版数据。
2021年,我们提出了很多疑问,但我们现在有了更多疑问,我们相信,聚沙成塔,洞见未来,因为有您的参与,本问
更新时间:2022-04-18 07:37
介绍Python安装方法、与机器学习相关的包以及常用命令
Python语言是目前机器学习领域使用最广泛的编程语言之一,拥有众多优秀的包和模块,并且相对简单易学。我们将简单介绍Python语言的特性,常用命令,以及和机器学习相关的包,例如NumPy,pandas,scikit-learn等,希望帮助有一定编程基础的读者迅速上手Python语言。
机器学习选股框架与多因子选股框架类似,具有一定优越性
机器学习中最为主流的方法监督学习,其核心思想是挖掘自变量和因变量之间的规律。我们将经典多因子模型稍加改造,以机器学习的语言描述。在训练阶段,根据历史的因子值X和收益
更新时间:2021-11-26 07:28