CNN

"CNN"(卷积神经网络),是一种具有巨大价值的深度学习技术。其图像和数据处理能力,使得金融市场分析、风险评估以及投资策略制定等方面得以显著提升。CNN能有效识别并学习金融市场中的复杂模式,如股票价格变动、市场情绪波动等,为金融决策提供强有力的数据支持。此外,CNN在算法交易、信用评分、欺诈检测等金融应用中也展现出无可比拟的优势,通过自动学习和优化交易策略,实现更精准快速的交易执行,提升金融业务的效率和智能化水平。总的来说,CNN是推动金融行业创新发展的重要工具。

DNN和CNN模型因子表现对比

问题

user3558B+可以做一期关于DNN跟CNN在短线因子跟长中线因子讲解吗?

策略源码

短周期

https://bigquant.com/experimentshare/d3a4560c6c0e4b4683c23c3ffff1315e

长周期

[https://bigquant.com/experimentshare/12338701162d46f0a801d9be76bf895a](https://bigquant.

更新时间:2024-06-07 10:55

DNN和CNN正则化参数调整问题

问题

DNN和CNN正则化参数是否可以只调L2的kernal_regularizer参数,其他参数是否需要调整? 是否从0.0001开始调,往大还是往小调?

视频

https://www.bilibili.com/video/BV1aQ4y1U7ua?share_source=copy_web

策略源码

[https://bigquant.com/experimentshare/e3a8039885734d5ea0fabe7c6e

更新时间:2024-06-07 10:55

DNN-AI选股:深度学习的学习率调整

2021年8月5日Meetup问题:深度学习的学习率在哪里可以调整,训练集和测试集的loss如何打印到一张图上,early_stop如何设置?深度学习的权值初始化方法对结果影响很大,能否做个全面介绍,CNN,lstm,mlp一般试用哪种初始化方法。lstm或者cnn后面接的mlp一般用几层为好?mlp的神经元数量一般要相较输入层扩充几倍?

[https://bigquant.com/experimentshare/c0853836ac224f7ab02c97acce9f973f](https://bigquant.com/experimentshare/c0853836ac224f7ab02

更新时间:2024-06-07 10:55

DNN-AI选股:深度学习的学习率调整

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

LSTM+CNN深度学习预测股价

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/c13d6baefe5d4c75bb87eea9364b0f75

\

更新时间:2024-06-07 10:55

CNN正则化参数调整

https://bigquant.com/experimentshare/e3a8039885734d5ea0fabe7c6e7d3c90

\

更新时间:2024-06-07 10:55

Tensorflow第三讲 - 深入MNIST(CNN)

构建一个多层卷积网络 CNN

在MNIST上只有91%正确率,实在太糟糕。在这个小节里,我们用一个稍微复杂的模型:卷积神经网络来改善效果。这会达到大概99.2%的准确率。虽然不是最高,但是还是比较让人满意。

卷积层

卷积层(Convolutional layer),卷积神经网路中每层卷积层由若干卷积单元组成,每个卷积单元的参数都是通过反向传播算法优化得到的。卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。

线性整流层

线性整流层(Rectified Linea

更新时间:2024-05-20 02:09

基于一维CNN模型的智能选股策略

导语

这是本系列专题研究的第四篇:基于卷积神经网络CNN的深度学习因子选股模型。卷积神经网络(Convolutional Neural Network, CNN),是计算机视觉研究和应用领域中最具影响力的模型之一。同样,如果将时间看作一个空间维度,类似于二维图像的高度或宽度,CNN也可以对时间序列处理产生令人惊喜的效果。本文首先大致介绍了CNN的原理,然后详细解释了一维CNN模型如何进行应用于时间序列并进行特征选取,最后以一个实

更新时间:2024-05-20 02:09

深度学习前沿 | 利用GAN预测股价走势

导语

本文是对于medium上Boris博主的一篇文章的学习笔记,这篇文章中利用了生成对抗性网络(GAN)预测股票价格的变动,其中长短期记忆网络LSTM是生成器,卷积神经网络CNN是鉴别器,使用贝叶斯优化(以及高斯过程)和深度强化学习(DRL)优化模型中超参数。此外,文章中非常完整地实现了从特征抽取、模型建立、参数优化、实现预测的过程,其中运用了多种机器学习方法,比如BERT进行文本情绪分析、傅里叶变换提取总体趋势、autoencoder识别高级特征、XGboost实现特征重要性排序等。本文学习的思路是:GAN算法概览 – 项目思路 – 项目详解。拟在学习完成后,在Bigquant平台

更新时间:2024-05-20 02:09

【参赛】Deep Alpha-CNN卷积神经网络调参

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 10:30

DeepAlpha短周期因子系列研究之:CNN在量化选股中的应用

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 06:49

lstm+cnn+A股去ST+大盘风控

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 03:48

机器学习:16-CNN

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


\

策略源码:

{{membership}}

https://bigquant.com/codeshare/ccbddd56-eddd-4a7f-95e2-88e8a0432a3d

\

更新时间:2024-04-25 07:40

怎么知道cnn模型ai训练看到的数据是怎么样的

更新时间:2024-02-01 15:49

利用CNN对股票“图片”进行涨跌分类——一次尝试

首先解释一下标题: CNN:卷积神经网络(Convolutional Neural Network), 在图像处理方面有出色表现,不是被川普怒怼的那个新闻网站; 股票涨跌:大家都懂的,呵呵; 股票图片:既然使用CNN,那么如果输入数据是股票某个周期的K线图片就太好了。当然,本文中使用的图片并不是在看盘软件上一张一张截下来的,而是利用OHLC数据“画”出来的; 尝试:这个词委婉一点说就是“一个很好的想法^_^",比较直白的说法是“没啥效果T_T”。


进入正题: 首先是画出图片。本文目前是仿照柱线图画的。 ![{w:100}](/wi

更新时间:2023-11-28 10:03

CNN深度学习模型中输入层报错

问题



https://bigquant.com/experimentshare/3aff241f03194816912c850f1f118ab6

\

更新时间:2023-10-09 07:46

CNN-LSTM的连接原理?

如题:CNN模块中的卷积层和LSTM模块在可视化工作界面通过连线连接,他们之间是通过什么原理进行融合和连接的呢?

希望得到平台工程师的解答,谢谢!

更新时间:2023-10-09 07:07

我在改LSTM+CNN代码时,运行不成功

求助平台策略工程师

我在改LSTM+CNN代码时,把输入特征改为15维时,运行不成功

策略地址为:https://bigquant.com/codeshare/8b2a7e00-18b2-4fd4-8777-6875307dae1e

\

更新时间:2023-10-09 03:22

为什么根据LSTM+CNN深度学习预测股价案例没有成交?

根据【模板策略】LSTM+CNN深度学习预测股价案例没有成交?

https://bigquant.com/wiki/doc/shendu-gujia-4teFqoC7MV

https://bigquant.com/community/t/topic/194980

https://bigquant.com/experimentshare/52d3c0772a2d4ef9bb5950c7c6646170

\

更新时间:2023-10-09 03:16

根据官网的基于一维CNN模型的智能选股策略报错及如何解决?

问题

https://bigquant.com/wiki/doc/yi-moxing-zhineng-celve-wLs8ZhDu4k

https://bigquant.com/experimentshare/59020df25be24cb4adc9be04d41c30a7

解答

重启开发环境再运行一次

更新时间:2022-12-20 14:20

通过LSTM-CNN模型,用相同数据的不同表示形式预测股价

摘要

作者:Taewook Kim, HaYoung Kim

出处:PLOS ONE, 2019-02

预测股票价格在制定交易策略或选择买卖股票的适当时机中起着重要作用。作者提出了融合长短期记忆-卷积神经网络(LSTM-CNN)模型,该模型结合了从相同数据的不同表示形式(即股票时间序列和股票图表图像)中的特征,以预测股票价格。所提出的模型由LSTM和CNN组成,用于提取时间特征和图像特征。作者使用SPDR S&P 500 ETF数据来衡量所提出模型相对于单个模型(CNN和LSTM)的性能。LSTM-CNN模型在预测股票价格方面优于单个模型。此外,作者发现蜡烛图是用于预测股票价格的最

更新时间:2022-11-02 09:07

lstm+cnn深度学习预测+大盘风控

有偿提供源码,有需要请加我v

微信号

AI_believers

更新时间:2022-11-02 08:26

用CNN算法实现A股股票选股

导语

在阅读了 深度学习的简要介绍后,本文将介绍深度学习CNN模型及其在量化投资领域中的应用。

深度学习在量化领域应用

机器学习作为人工智能的核心,其传统算法在解决很多问题上都表现出了高效性。随着近些年数据处理技术上的进步和计算能力的提升,深度学习得以在很多问题上也大放光彩,成为近一段时间互联网、金融等领域的大热门。

在量化投资领域,机器学习尤其是由统计学延伸的各种算法一直以来都被尝试应用在选股、择时等策略的开发上,随着深度学习在其他领域上的突破,其在自动化交易甚至投资策略的自开发自学习方面的应用成为了大家探索的焦点。

为什么要用深

更新时间:2022-05-12 13:58

【参赛】Deep Alpha-CNN策略克隆&调参擂台赛

一、关键结论

由于无法进行市场选股,因此本次参赛采用了中证800股票池,但是对比基准训练效果并不如基准,且回测结果并不稳定。

我的模型相对于基准策略调整如下:

1)添加了5个特征;

2)标准化操作后去除了一下极值;

3)CNN kernel_size调整为2和4;

4)dropout调整为0.15

5)过滤退市股票

\

二、基准模型回测经验&模型结果

在我自己的基准模型中,其实进行了多个参数的调整,最佳的夏普比是0.57,但是结果并不稳定,再次运行结果波动较大。


[https://bigquant.com/experimentshare/e46887a

更新时间:2021-12-26 02:52

跟着李沐学AI—ResNet论文精读【含研报及视频】

原文标题:Deep Residual Learning for Image Recognition

发布时间:2015年

作者:Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research

{w:100}{w:100}{w:100}{w:100}摘要

越深的神经网络训练起来越困难。本文展示了一种残差学习框架,能够简化使那些非常深的网络的训练,该框架使得层能根据其

更新时间:2021-11-30 08:30

分页第1页
{link}