本文14323字,阅读约28分钟
导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。
1.人工智能量化投资概述
2.人工智能技术简介
3.机器学习在量化投资中应用的具体方法解析
AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅
更新时间:2024-12-05 02:26
本文介绍了因子模型、对冲以及Beta的相关内容,并针对如何进行市场风险对冲给出了具体的案例。
因子模型是通过其他若干项资产回报的线性组合来解释一项资产回报的一种方式,因子模型的一般形式是:
这看起来很熟悉,因为它正是多元线性回归模型。
一项资产的beta是该资产收益率与其他资产收益率通过上述模型回归拟合的beta。比如,我们用回归模型
更新时间:2024-06-12 06:07
两年前,因子动物园推送第一篇推文,正式同您认识。两年来,我们也一直在思考,因子与因子模型可以做些什么,以为我们提供更多的洞见。本文将结合近年的新研究,和我们的理解,对此进行探讨。
传统上,因子和因子模型都是以预测股票未来收益(和风险)为目的。无论从学术研究(资产定价)还是投资实践来看,这都是非常自然的事情。由此自然地构建起了一套以各种公司特征为基础的因子(定价因子和异象),以及包含不同因子的因子定价模型(往往只包含较少数量的因子,以保证模型的简约性)。关于这些经典问题,可以参考任意一本关于实证资产定价的书,以及我们 BetaPlus 小组的拙作——《因子投资:方法与实践》。
更新时间:2024-06-11 03:31
更新时间:2024-06-11 02:40
更新时间:2024-06-07 10:55
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
\
更新时间:2024-06-07 10:55
这是旧版的例子, 只能在2.0.0的Aistudio中运行
https://bigquant.com/experimentshare/54fe864132a7447894540d70cd2e36e5
\
更新时间:2024-05-24 11:02
本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
众所周知,Barra因子分析是目前行业内外最常用的因子分析体系。
然而在做Barra体系分析的时候常用的一个方式就是行业或市值中性化,今天主要用最易懂的语言介绍一下什么是barra因子分析体系,以及什么是因子中性化。在这里我会避开繁琐的数学公式,尽量深入浅出的让
更新时间:2024-05-20 06:44
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/72d5601550164505aad979f7265f8fec
\
更新时间:2024-05-20 00:50
更新时间:2024-05-17 06:27
本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:
https://bigquant.com/wiki/doc/57ue5zci5lyy5yyw5qac6lw-LvaK2l8nla
[https://bigquant.com/experimentshare/a65ee754dc984929afffd7614437348c](https://bigquant.com/experimentshare/a65ee754dc9
更新时间:2024-05-16 06:35
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 09:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 07:51
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 06:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 06:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 06:01
\
更新时间:2024-05-15 02:10
像一些复杂的因子合成方法怎么实现呢,有没有相关的算子模块或者代码分享呢
更新时间:2023-10-09 07:09
消息在股票交易中有很大的影响力,如果没有对消息的处理会导致策略经常中雷,怎么办呢?
更新时间:2023-10-09 03:28
更新时间:2023-10-09 02:20
更新时间:2023-08-21 10:56
东方
20150626-东方证券-《因子选股系列研究之一》:多因子模型的基石——单因子有效性检验.pdf
20150909-东方证券-《因子选股系列研究之二》:低特质波动,高超额收益.pdf
20151207-东方证券-《因子选股系列研究之三》:投机、交易行为与股票收益(上).pdf
20151214-东方证券-《因子选股系列研究之四》:基于交易热度的指数增强.pdf
20160216-东方证券-《因子选股系列研究之五》:剔除行业、风格因素后的大类因子检验.pdf
20160512-东方证券-《因子选股系列研究之七》:投机、交易行为与股票收益(下).pdf
20160525-
更新时间:2023-06-02 14:33