数据预处理

数据预处理在金融领域扮演着至关重要的角色。它是金融分析和模型构建的基石,直接关系到投资策略、风险控制以及市场分析等决策的质量。通过对原始数据进行清洗、转换和标准化等操作,数据预处理能够消除异常值、填补缺失数据、平滑噪声,从而使数据更加规整和一致,提高分析的准确性和可靠性。此外,数据预处理还能够将不同来源、不同格式的数据整合到一起,为后续的金融建模和量化分析提供坚实的数据基础。在竞争激烈的金融市场中,有效的数据预处理能够帮助金融机构快速洞察市场变化,做出明智的投资决策,从而获取更大的经济效益。

【历史文档】策略-可视化模块深入理解

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】算子样例-缺失数据处理

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

数据预处理方法(标准化、规范化、二值化等)

预处理数据

数据预处理在众多深度学习算法中都起着重要作用,实际上,对数据进行适当处理后,很多算法能够发挥最佳效果。然而面对各种各样的数据,很多时候我们不知道怎么样才能针对性进行处理。本文介绍了Python下的机器学习工具scikit-learn。其中,“sklearn.preprocessing”模块提供了几种常见的函数和转换类,把原始的特征向量变得更适合估计器使用。

[https://bigquant.com/experimentshare/45cc0fe6c95b43848f64032bbef0a440](https://bigquant.com/experimentshare/

更新时间:2024-06-12 05:56

深度学习的特征裁剪值调整

https://bigquant.com/experimentshare/900f6943cf024d2d90f10135afcad089

值调整

更新时间:2024-06-07 10:55

深度学习在期货高频上的应用

8月19日Meetup问题模板:

https://bigquant.com/experimentshare/f58dbfb388454407b8a2b99eb14cf1ea

\

更新时间:2024-06-07 10:55

数据正态分布或方形分布对训练的准确性的影响

问题

在机器学习中策略中,数据正态分布或方形分布对训练的准确性产生重要影响吗?如果有,有什么方法处理呢?

视频

https://www.bilibili.com/video/BV1jT4y1R7wc?share_source=copy_web

\

更新时间:2024-06-07 10:55

LSTM大盘择时+Stockranker选股

请参考新版的大盘择时

机器学习+择时+跟踪止损+技术分析

策略案例

https://bigquant.com/experimentshare/a5ed3eddf32f4e4dad4811a1acc257f0

\

更新时间:2024-05-24 10:28

多层感知器回归模型案例


本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

[https://bigquant.com/experimentshare/42bf93884b1246ad83c2874f06765732](https://bigquant.com/experimentshare/42bf93884b12

更新时间:2024-05-20 06:39

机器学习之“无监督学习”

起源于 1901 年 Pearson 的主成分分析(PCA),通过对协方差矩阵的特征值分解或 SVD 分解,通过对特征值排序选取相应的特征向量,将高维特征映射到低维上,达到降维的目的。用于数据预处理。

1998 年,降维算法PCA首次与核方法结合,先将数据集通过核函数(Kernel Function)映射到高维空间,然后在高维特征空间中做 PCA。核 PCA 有更好的降维效果。

2000 年,始于局部线性嵌入(Locally Linear Embedding)的流形学习(Manifold Learning)引领了降维算法的新浪潮。

2008 年 ,t-SNE 作为非线性降维方法,可更好地

更新时间:2024-05-20 03:21

使用sklearn进行数据预处理

https://bigquant.com/experimentshare/fa4b0df66251484196ca7588a9505f75

\

更新时间:2024-05-20 02:09

用随机森林-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 06:42

用传统框架测试机器学习-GBDT算法

策略案例

https://bigquant.com/experimentshare/44cc116a1dad4c37983b9be35da208ee

\

更新时间:2022-11-20 03:34

人工智能系列之十二:人工智能选股之特征选择 华泰证券_20180725_

摘要

特征选择是人工智能选股策略的重要步骤,能够提升基学习器的预测效果特征选择是机器学习数据预处理环节的重要步骤,核心思想是从全体特征中选择一组优质的子集作为输入训练集,从而提升模型的学习和预测效果。 我们将特征选择方法应用于多因子选股,发现特征选择对逻辑回归_6m、基学习器的预测效果有一定提升。我们以全A股为股票池,以沪深300和中证500为基准,构建行业中性和市值中性的选股策略。基于F值和互信息的方法对于逻辑回归_6m、XGBoost_6m、基学习器的回测表现具有明显的提升效果。 随着入选特征数的增加,模型预测效果先上升后下降特征个数并非越多越好。以逻辑回归_6m和XGBoost_

更新时间:2022-07-29 07:12

自定义数据进行因子分析demo

https://bigquant.com/experimentshare/28a454b6532144eb819a78efae160768

\

更新时间:2022-02-21 11:25

华泰人工智能系列之十二:人工智能选股之特征选择-华泰证券-20180725

摘要

特征选择是人工智能选股策略的重要步骤,能够提升基学习器的预测效果

特征选择是机器学习数据预处理环节的重要步骤,核心思想是从全体特征中选择一组优质的子集作为输入训练集,从而提升模型的学习和预测效果。我们将特征选择方法应用于多因子选股,发现特征选择对逻辑回归_6m、XGBoost_6m基学习器的预测效果有一定提升。我们以全A股为股票池,以沪深300和中证500为基准,构建行业中性和市值中性的选股策略。基于F值和互信息的方法对于逻辑回归_6m、XGBoost_6m、XGBoost_72m基学习器的回测表现具有明显的提升效果。

**随着入选特征数的增加,模型预测效果先上升后下

更新时间:2021-11-26 07:28

机器学习新手十大算法之旅

作者:James Le 编译:caoxiyang


在机器学习中,有一个叫做“世上没有免费午餐”的定理(NFL)。简而言之,我们无法找到一个放之四海而皆准的最优方案,这一点对于监督学习(即预测建模)尤为重要。例如,你不能说神经网络总是比决策树好,反之亦然。因为其中有很多因素在起作用,比如数据集的大小和结构。

因此,您应该针对您的问题尝试多种不同的算法,同时,保留一组数据,即“测试集”来评估性能并选

更新时间:2021-08-24 05:46

lightGBM_AI选股

https://bigquant.com/experimentshare/2fbb2629dcb0450bbf72e224835b4957

\

更新时间:2021-07-30 09:11

回归、分类模型构建

导语

回归、分类和排序是我们经常遇到的问题场景。本文主要介绍如何实现回归和分类两类问题的模型构建。

首先我们明确一下算法在机器学习中的地位。一般来说,机器学习有三个要素: 数据、算法和模型

  • 数据 是场景的描述,包括输入和输出。
  • 算法 是得到模型的过程,狭义上说,特指机器学习算法,如传统线性回归、树和支持向量机以及深度学习; 广义上说,从输入数据到最终确定模型输出的所有过程,即建模流程都可以看作算法,如分类、回归模型,搜索最优参数算法。

下面我们来举两个例子,看看回归和分类问题的应用场景有什么不同。

回归模型

![](/wik

更新时间:2021-07-30 08:22

基于XGBoost的价值选股策略代码

本代码完整版一共包括三部分:数据、算法、回测交易。 由于该策略与机构有一些合作,我们只放出了数据和算法。希望大家能够理解!

策略案例

https://bigquant.com/experimentshare/5a93201876eb401e998867e0b5106175

\

更新时间:2021-07-30 08:09

分页第1页
{link}