投资组合

投资组合是从多元化投资角度出发,通过精心选择与搭配不同风险与收益特性的资产,旨在实现特定投资目标并降低风险的一种策略。一个有效的投资组合能够在各种市场环境下保持相对稳定的收益,并通过分散投资来减少单一资产的风险。其核心在于资产配置,即根据投资者的风险承受能力、投资期限和收益预期,将资金分配到股票、债券、现金及替代性投资等不同资产类别中。通过动态地调整组合中的资产权重,可以应对市场环境的变化,以确保组合的表现与投资者的目标和风险容忍度保持一致。

周线计算指标

7月30日Meetup 策略模板:

策略案例


https://bigquant.com/experimentshare/062a0182231e49f7996b0543e7acad48

\

更新时间:2024-06-07 10:55

模型保存读取

7月16日Meetup模板案例:

策略案例

https://bigquant.com/experimentshare/0aae2066f74e475ba198a6f79757c03f

\

更新时间:2024-06-07 10:55

分钟因子加工

https://bigquant.com/experimentshare/8671700b78014d6cbe44261ba23820f9

\

更新时间:2024-06-07 10:55

小市值策略

策略源码

{{membership}}

https://bigquant.com/codeshare/41bf4005-7f89-45a6-921e-51b1dcc771d9

\

更新时间:2024-06-07 10:55

因子构建


\

更新时间:2024-06-07 10:55

投资组合风险收益率计算公式

投资组合风险和收益率的计算涉及多个财务概念和数学公式。让我们首先了解一些基本概念,然后进入具体的计算方法。

投资组合收益率的计算 假设投资组合由多种资产组成,每种资产的预期收益率和投资占比各不相同。

投资组合的预期收益率可以通过以下公式计算:Rp ​=∑(n,i=1) (wi ×Ri​ )

Rp ​ 代表投资组合的预期收益率。

n 代表投资组合中的资产种类数。

wi ​代表第 i 种资产在投资组合中的权重

更新时间:2024-06-07 10:48

投资组合风险因素及规避措施

投资组合风险是指投资者在构建投资组合时面临的各种不确定性因素,这些因素可能导致投资组合的实际收益与预期收益产生偏差,从而给投资者带来损失。

风险因素

投资组合的风险因素众多,它们可以从多个角度影响投资的回报和稳定性。理解这些风险因素对于有效的投资管理和风险控制至关重要。以下是一些主要的投资组合风险因素:

  1. 市场风险(系统性风险)

    1. 股票市场风险:整个股票市场的波动可能影响个股和股票基金的表现。
    2. 利率风险:债券和其他固定收益投资的价值受利率变动的影响。
    3. 货币风险:投资于不同货币的资产可能受到汇率波动的影响。 4

更新时间:2024-06-07 10:48

LSTM大盘择时+Stockranker选股

请参考新版的大盘择时

机器学习+择时+跟踪止损+技术分析

策略案例

https://bigquant.com/experimentshare/a5ed3eddf32f4e4dad4811a1acc257f0

\

更新时间:2024-05-24 10:28

如何对1-3日内上涨的股票进行标注

问题

freestyle996+如何运用股票标注的方法对1-3日内上涨的股票进行标注?

视频回放

https://www.bilibili.com/video/BV1uP4y1R7kh/?spm_id_from=333.999.0.0

策略源码

[https://bigquant.com/experimentshare/0a4bb333c1bb4f4e91d7701a3538f6f4](https://bigquant.co

更新时间:2024-05-21 09:10

初识协整

新版请移至:

https://bigquant.com/wiki/doc/5yid6kg5y2p5pw0-d4d4ECrxKn

导语

本文介绍了协整的初步内容。


协整

直观理解

协整是什么这个问题回答起来不是那么直观,因此我们先看下图,了解一下具有协整性的两只股票其价格走势有什么规律。

![图1  两只协整股票的走势](/wiki/api/attachments.redirect?id=c7299e97-d4d4-44

更新时间:2024-05-21 06:44

高频回测模块择时策略

8月19日Meetup策略模板:

https://bigquant.com/experimentshare/a6bae485ffcc47819510b788ddfad338

\

更新时间:2024-05-21 06:30

A股股票过滤模块

https://bigquant.com/experimentshare/116fdc30e1944051ba43f73e74837776

\

更新时间:2024-05-20 07:21

获取指数成分和行业股股票列表

https://bigquant.com/experimentshare/eb414dd3e2a54ed6852dd7b0a5541fdc

\

更新时间:2024-05-20 02:37

神经网络交易算法

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

https://bigquant.com/experimentshare/723e10568f294571924b89f3953ce20b

\

更新时间:2024-05-20 01:02

StockRanker选股+随机森林大盘风控

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 07:25

主动投资管理之信息率

https://bigquant.com/experimentshare/3e9b0e7623284f01b7e206d1a3df4b92

\

更新时间:2024-05-17 06:27

深度学习量化交易模型

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 03:49

反包策略新思路-7月收益14%

sss

更新时间:2023-07-06 07:55

股票和债券的相关性

简介

投资者依靠股票-债券的相关性来构建最优投资组合、设计对冲策略和评估风险。大多数投资者只是通过推断月度收益的历史相关性来估计股票与债券的长期相关性,但这种方法显然是不可靠的。作者为产生可靠的股票-债券相关性的预测引入了四项创新。首先,本文引入单期相关的概念,以解决股票和债券收益的自相关和滞后交叉相关不为零以及长期相关性随时间变化的问题。第二,确定了股票-债券相关性的基本预测因子。第三,将股票和债券相关性建模为一些基本预测因子路径的函数,而不是单一观测值的函数。最后,对样本进行审查,进行部分样本回归。结果显示,股票-债券相关性预测的可靠性得到显著提高。

全文

[/wiki/

更新时间:2023-06-13 06:53

再平衡策略的收益原理与改进方法-华泰证券-20210913

摘要

再平衡策略可通过多种改进方法,以提高在不同市场环境中的适应性

本文介绍了再平衡的定义、分类,对比了再平衡策略和买入并持有的差异,并针对再平衡策略进行改进优化。定期再平衡在投资组合中股票相对债券出现单边趋势行情时,表现不如买入并持有。为了提高再平衡在不同行情中的适应性,本文提供了一系列在实践中可行的方案。通过对中美股债组合再平衡的回测分析,发现适当降低定期再平衡的频率或采用超出范围再平衡策略可以在趋势行情中提高收益并减小回撤。此外将部分资金投入到股票趋势策略中,或以趋势信号判断行情走向后再选择性地进行再平衡,都能够增强再平衡策略在不同市场环境下的适应性。

定期再

更新时间:2023-06-13 06:53

对抗学习:学习动态的技术交易策略

Learning the Dynamics of Technical Trading Strategies

作者:Murphy N. J., Gebbie T. J.

出处:Quantitative Finance, 2021-03

摘要

本文使用了一种基于对抗型专家的在线学习算法来学习,使财富最大化的零成本组合交易策略所需的最佳参数。该学习算法用于确定大量技术交易策略的动态,这些技术交易策略可以通过历史回测,并从约翰内斯堡证券交易所每日和日内数据执行的基础交易策略集合中形成一个聚合的投资组合交易策略。本文一个关键的贡献是:在每日取样和日内时间尺度上,使用一个新的假设检验来测

更新时间:2023-06-13 06:53

生成对抗网络:用于金融交易策略、和组合优化

Generative Adversarial Networks for Financial Trading Strategies Fine-tuning and Combination

作者:Adriano Koshiyama, et al.

出处:Quantitative Finance, 2020-09-01

摘要

系统交易策略是分配资产以优化特定绩效的算法程序。为了在竞争激烈的环境中获得优势,分析师需要适当地微调策略,或者发掘如何通过创造新的alpha以组合弱信号。已经有多种方法对微调和组合这两个方面进行了广泛研究,但是新兴技术,例如生成对抗网络,也会对这些方面产生

更新时间:2023-06-13 06:53

AI量化策略中如何选择合适的因子

问题

AI量化策略中如何选择合适的因子

视频

https://www.bilibili.com/video/BV1J24y1f7mJ/?spm_id_from=333.999.0.0

PPT

{{membership}}

[/wiki/static/upload/42/4267409e-a9f4-42db-bb79-1321ba5e4c59.pdf](/wiki/static/upload/42/4267409e-a9f4

更新时间:2023-05-06 07:23

机器学习+择时+跟踪止损+技术分析

策略案例

https://bigquant.com/experimentshare/41ba8c41f99346a6872f3ecac3a50c80

\

更新时间:2022-11-20 03:34

多个套利对配对交易

策略案例

https://bigquant.com/experimentshare/dc13d0aed4b64f48803af3f764129b44

\

更新时间:2022-11-20 03:34

分页第1页第2页第3页第4页第5页
{link}