交易

金融交易,简单来说,是指涉及货币、证券、外汇、衍生品等金融资产的买卖活动。这些交易可以在多种市场进行,包括股票市场、债券市场、外汇市场、商品市场、衍生品市场等。这些市场共同构成了全球金融市场体系,为投资者、企业、政府等提供了筹集资金、风险管理、资产配置等关键功能。 金融交易具体包括以下几个方面: 股票交易:股票是股份公司发行给股东的所有权凭证,代表着股东对公司的所有权。股票交易就是在股票市场上买卖股票的行为。股票价格的波动反映了市场对公司业绩、行业前景、宏观经济状况等多种因素的综合判断。 债券交易:债券是政府、企业等机构为了筹集资金而发行的一种债务工具。债券交易就是在债券市场上买卖债券的行为。债券的价格和收益率受到利率、信用评级、通胀等多种因素的影响。 外汇交易:外汇交易是指不同货币之间的买卖活动。外汇市场的规模巨大,24小时不间断运行,是全球最大的金融市场之一。外汇交易受到各国货币政策、经济数据、地缘政治等多种因素的影响。 商品交易:商品交易主要涉及农产品、金属、能源等实物商品的买卖。商品市场的价格受到供求关系、天气、政策等多种因素的影响。 衍生品交易:衍生品是一种基于其他金融资产(如股票、债券、外汇等)的金融工具,如期货、期权、掉期等。衍生品交易具有高风险、高杠杆的特点,通常用于风险管理、资产配置等目的。 金融交易的核心在于价格的确定和风险的管理。价格的确定通常基于市场供求关系、宏观经济状况、政策等因素;而风险管理则涉及对冲、分散投资、止损等多种策略。在金融交易中,投资者需要具备一定的市场分析能力和风险意识,以做出明智的投资决策。

股票连续上涨后的持续上涨的概率是多少

旧版声明

本文为旧版实现,仅供学习参考,新版请移步至以下几个链接。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors

[https://bigquant.com/wiki/doc/dai-PLSbc1SbZX](https://bigquant.com/wiki/doc/dai-PLS

更新时间:2024-05-20 00:35

AI量化攻略:交易经验or因子分析

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 06:26

模拟交易方法

模拟交易功能是BigQuant特有的量化服务,可以根据用户的策略每日为用户通过手机,email等途径推送信号。

在进行模拟交易信号接收之前需要确保以下几点。


1.账户更新余额充足(如更新数据需要大于1C的资源)

2.已经有一个成功回测的策略。


具体模拟交易提交步骤如下

1.完成回测,绑定实盘日期

2.提交模拟交易定时任务

3.查看模拟交易

4.接收信号

5.分享策略至天梯

\

1.完成回测

绑定实盘日期

首先需要保证回测时在数据抽取时需要保证开始和结束日期绑定实盘交易

![](/wiki/api/attachments.redirect?i

更新时间:2024-02-04 05:04

盘中最佳交易点的量化分析方法

作者:chenao1106

导语

本次分享内容:拿⼀个策略案例,介绍盘中买卖量化如何实现,收益变化如何?

我们平时看到的策略,买卖时间点基本上是开盘、收盘这两个时间点,但经数据分析按年维度看,⼤盘即使在上涨情况,开盘买第⼆天收盘卖,胜率达不到50%,通过近5年数据分析,⼤盘如果全年持平情况,胜率约48%。全年按250个交易⽇计算,持仓2天的超短线,会有125轮交易。按48%的胜率,即胜率60次,亏损65次,做短线的朋友⼀般会选择波动相对⼤点的股票去做,持仓2天平均盈亏的幅度按4%计算,按开盘买、第⼆天收盘卖,这个买卖时机的因素会导致全年亏损预计为(65-60)*4%=20%。我们

更新时间:2023-11-10 09:17

配对交易在数字货币期货上的研究和实现

概览

  • 时间序列和平稳性研究
  • 配对交易研究
  • 数据货币期货配对交易研究

(持续更新中)

时间序列数据

时间序列数据是单一变量按时间的先后次序产生的数据,是投资研究中最常见的一类数据。

如下为数字货币合约ETHUSDT的分钟行情数据,这是一个典型的时间序列数据

import dai

df = dai.query("""
SELECT close FROM cc_binance_future_um_bar1m
WHERE date BETWEEN '2023-01-01' AND '2023-01-31' AND instrument = 'E

更新时间:2023-10-01 09:41

了解AIStudio

AIStudio是BigQuant平台以AI为核心的Cloud IDE,可以用于量化投资数据分析、因子挖掘、模型训练、回测和交易,以及更广泛的程序开发和AI模型开发训练等。

/wiki/static/upload/31/315c1087-6d07-491a-90ef-43e717997077.mp4

从这里开始

关键概念

\

更新时间:2023-09-07 03:12

WorldQuant Alpha101因子复现及因子分析

1.引言

在学术研究中,Alpha是数学表达式、计算机源代码和配置参数的组合,可以与历史数据一起用于预测各种金融工具的未来走势。而在实践中,Alpha通常意味着进行交易的合理“预期回报”。两者并不一定相同。许多情况下,能够带来合理“预期回报”的Alpha并不容易构建,因此,对于Alpha的挖掘和公式化的研究始终是业界的一个重要课题。在这样的背景下,世坤(WorldQuant)于2015年发布了报告101 Formulaic Alphas。在这篇报告中,世坤提供了101个真实生活中的量化交易Alpha的明确公式(这些也可以看作是计算机代码)。虽然其中的一些模型较为复杂,但世坤设

更新时间:2023-08-29 10:20

低延迟趋势线与交易性择时-短线择时策略-广发证券20130726

摘要

传统移动平均线(MA)的缺点

移动平均线(MA)是技术分析中常用的一类趋势跟踪指标,其可以在 一定程度上刻画股票价格或指数的变动方向。MA 的计算天数越多,平滑 性越好,但时滞带来的延迟影响也越严重。因此,在使用 MA 指标进行趋 势跟踪时,容易出现“跟不紧”甚至“跟不上”的情况。平滑性和延迟性 在 MA 指标中成为了不可避免的矛盾,这就促使我们去寻找化解这一矛盾 的工具和方法。

低延迟趋势线(LLT)的构造

与 MA 类似的均线指标还有 EMA,其本质是在计算中对靠近计算日的 价格赋予更大的权重。EMA 指标的计算方式在信号处理理论中恰好对应着 一类一阶低

更新时间:2023-08-07 05:50

“琢璞”系列报告之十七:高频数据中的知情交易(二)

摘要

不论是在国内还是在海外,对于知情交易者的追踪向来是投资者关心的话题。在“琢璞”系列的第二篇中,我们详细介绍了用PIN方法来衡量市场中知情交易者存在的可能性(或者“指令流毒性”)。但是PIN方法存在的缺点也很明显,模型复杂,对算力和数据的要求高。2012年,原作者改进了对于知情交易者衡量的方式,提出了VPIN的衡量方法,该方法牺牲了一些准确性,但是却极大地提升了模型在实际应用中的可操作性。本期琢璞我们推荐David, E. , López de Prado Marcos M, & Maureen, O. 的《Flow toxicity and liquid

更新时间:2023-07-14 03:39

考虑领先滞后关系的宏观因子择时策略

回顾

交易性择时系列报告

系列之十三《基于条件随机场的周频择时策略》 2018-04-03 系列之十二《虚拟遗憾最小化应用于量化择时与交易》 2017-07-06 系列之十一《广发TD线:在趋势中把握波段》 2017-07-03 系列之十《广发TD幅度膨胀指标:在动量中寻找突破》 2017-04-20 系列之九《利用均线间距变化提前预判趋势》 2017-03-14 系列之八《指数高阶矩择时策略》 2015-05-20 系列之七《基于加权傅里叶变换的长期趋势预测》 2014-08-28 系列之六《探寻抛物线逼近下的创业板拐点》 2014-07-11 系列之五《从希尔伯特变换到波浪理论择

更新时间:2023-06-13 06:53

分享一个指标 STOCHRSI 算法

STOCHRSI 指标理解

  • 这几天帮一个朋友解决一个关于指标的问题,这个指标就是 STOCHRSI 。在网上查了很多资料,中文的真是甚少。而且仅有的也不是讲的很清楚。对于我这样的 交易小白,简直是天书。 不过只要研究多少会有点收获的,下面分享下经验,需要用这个的朋友可以借鉴。

在网上找到了一些 关于这个指标的计算公式。

/*
LC := REF(CLOSE,1); //REF(C,1) 上一周期的收盘价
RSI:=SMA(MAX(CLOSE-LC,0),N,1)/SMA(ABS(CLOSE-LC),N,1) *100;
%K:     MA(RSI-LLV(RS

更新时间:2022-11-20 03:34

2023校招宣讲会·复旦站,本周四18:00,欢迎准时加入

机器学习可以帮助我们进行预测和决策。可以用历史数据训练机器学习模型,来预测某个资产未来的收益率,或者是波动率(风险),然后基于模型预测来进行交易。

比如,在选股策略中,我们可以把股票的量价数据、财报数据、新闻数据等作为输入,让模型预测股票未来收益率,接下来做多预期收益率高的股票,做空预期收益率低的股票。

所以,用机器学习方法的优势,就是处理数据,从数据中获得规律的能力比传统方法要强大。

更多关于机器学习在量化投资中的应用,9月8日18:00,非凸科技的联合创始人&CTO李佐凡为同学们做深入讲解,欢迎准时参加哦@复旦

相关链接:<https://mp.weixin.qq.com/s/Ym

更新时间:2022-09-05 09:35

使用raw_perf数据

我们一方面可以在交易详情的表格里查看交易细节数据,另一方面其实这个数据有接口,用户是可以直接可以查看并使用的,这里是一个简单例子,查询某几天的持仓、交易、成交详情。

https://bigquant.com/experimentshare/f74fe642a0514746b17cc5439f676dd1

\

更新时间:2021-11-20 03:28

人工智能和机器学习对交易和投资的影响

作者:Michael Harris 编译:caoxiyang


导语

以下是我几个月前在欧洲做的一次演讲的摘录,当时我应邀为一群低调但净资产很高的投资者和交易员做演讲。该主题由主办方决定,是关于人工智能和机器学习对交易和投资的影响。下面的节选分为四个部分,涵盖了原始报告的50%。

人工智能和机器学习对交易的一般影响

人工智能(AI)允许用机器代替人。在20世纪80年代,人工智能研究主要集中在专家系统和模糊逻辑。随着供应算力的成本降低,使用机器解决大规模优化问题变得经济可行。由于硬件和软件方面的进步,如今人工智能专注于使用神经网络和其他学习方法来识别和分析预测变量,

更新时间:2021-10-21 06:30

分页第1页第2页
{link}