实盘交易

实盘交易,是金融领域中的一项核心活动,指的是投资者通过交易平台实际买卖金融产品的过程。在这种交易中,投资者的资金和证券真实交换,区别于模拟盘或虚拟交易。实盘交易不仅是市场参与者实现投资收益或承担风险的主要途径,也是金融市场价格发现和资金配置功能的重要体现。在实盘交易中,投资者需根据市场动态、基本面和技术分析等手段做出决策,并承担由此产生的后果。这种交易方式要求投资者具备较高的风险意识和市场认知能力,同时也为他们提供了在波动中寻求机会、实现资产增值的空间。

【历史文档】策略回测-回测模块详解

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略-实盘操作文档

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】因子构建与标注样例-TALIB库定义技术指标_自适应均线

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

BigTrader - 回测与交易引擎

什么是BigTrader

BigTrader是宽邦科技推出的致力于为用户提供便捷、功能强大的交易引擎。

在量化研究的过程中,量化研究员(宽客)需要在历史数据里回放模拟,验证策略效果,这就是BigTrader交易引擎的应用场景。

主要功能: 量化策略编写、回测分析、仿真模拟和实盘交易。

支持品种: 股票、基金、期货、可转债、指数;未来会支持期权、债券、两融等。

交易频率: 日线、分钟、Tick、逐笔。

交易引擎的优势:

  • 回测研究贴近真实 交易,最大程度保证回测的准确性
  • 回测研究、模拟交易、实盘交易为同一套代码,无需做任务修改

更新时间:2024-12-13 06:01

141-基于移仓换月实盘情形下的布林带期货通道突破策略

回测绩效

\

策略简介

我们在《127-期货布林带通道突破策略-日频》介绍了一种常见的期货CTA策略,该策略是非常经典的一个策略,常年在实盘策略排前。那篇文章里,我们交易的是某个期货品种的主力合约(8888)合约,但做个实盘的人知道,8888主力是没法交易的,我们真正实盘的时候交易的是具体的有明确交个日期的合约。

因此本策略是通过主力合约出信号,然后在具体合约上交易买卖,这和真实交易情形就是一致的了。

那么新的问题来了,

更新时间:2024-08-19 02:31

HFTrade使用文档

交易引擎介绍

HFTrade是宽邦科技推出的致力于为用户提供便捷、功能强大的高频量化交易策略编写、回测分析、模拟测试和实盘交易的工具。

支持的品种

股票、基金、期货,可转债,未来会支持期权、债券、两融

交易频率

日线、分钟、Tick、逐笔

策略编写

策略程序架构

名称 说明
initialize 策略初始化函数,只触发一次。可以在该函数中初始化一些变量,如读取配置等
before_trading 策略盘前交易函数,每日盘前触发一次。可以在该函数中一些启动前的准备,如订阅行

更新时间:2024-06-18 10:48

龙头战法实盘+AI-量化大赛NO.3-中证150增强_new

前言

感谢BQ-小Q送的礼物,礼物已经收到拉,一如既往的黑盒高科技风。高端大气上档次。


  • {w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}

    \


![{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:

更新时间:2024-06-13 03:28

深度学习在期货高频上的应用

8月19日Meetup问题模板:

https://bigquant.com/experimentshare/f58dbfb388454407b8a2b99eb14cf1ea

\

更新时间:2024-06-07 10:55

59th Meetup

本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb

因子挖掘

如何利用市场信息?

利用市场信息进行量化投资主要涉及以下步骤:

  1. 数据收集:首先,需要收集和整理市场数据,包括股票价格、交易量、基本面数据、新闻、宏观经济数据等。这些信息可以从各种数据供应商或公开数据源获取。
  2. 数据预处理:对收集到的数据进行清洗和预处理,处理缺失值、异常值、重复值等,保证数据的准确性和完整性。
  3. 特征工程:根据投资策略和模型需求,进行特征工程,提取有价值的特征和信号。
  4. 模型构建:选择合适的模型(如回归模型、机器学习模型、深度学习模型

更新时间:2024-06-07 10:55

根据策略的前期表现,在不同的策略间切换实施

问题

Q2:实盘中有没有办法根据策略的前期表现,在不同的策略间切换实施

视频

https://www.bilibili.com/video/BV15r4y1i7XP?share_source=copy_web

\

更新时间:2024-06-07 10:55

多因子选股策略-股票日频

https://bigquant.com/experimentshare/c2cf252d64b7408a8071f4d78f52a5ea

\

更新时间:2024-05-20 10:04

小市值策略源码

{{membership}}

https://bigquant.com/codeshare/ffad41f4-0b34-4997-9702-5b7753950675

\

更新时间:2024-05-20 07:35

DQN个股择时策略研究

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

导语

本文主要分享一个基于Deep Q Network的对于个股的择时策略

算法简介

DQN与Q-Learning

本文主要使用的是Deep Q Network。DQN是强化学习的一种方法,结合了Q-learning和深度学习神经网络。

Q-learning是用一张表来记录各个状态下的各个行为的q值,它能记录的状态

更新时间:2024-05-20 00:40

AI选股策略_概念过滤

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 07:50

提升实盘的仓位管理策略


作者:woshisilvio

导语

在以往的认知中我们认为一个量化策略的选股>择时>风控,但经过多次的实盘交易发现风控处理不当会导致我们牛市赚的少、熊市亏更多。因此提出一种次优解的风控思路:风控>择时>选股。根据人工择时的经验,设计执行的固定量化风控准则(交易纪律),可以决定我们收益的下限,以及回撤的上限。

在本次分享中,将从以下四个方面展开:

1.仓位管理的策略。同时,优化上期分享的超跌反弹策略。

2.常用来做优化的工具和方法

3.对抗过拟合的方法

4.彩蛋策略:资金流大单追涨策略。预告下一期meetup

仓位管理策略

一个完整的AI-量化模型由三部

更新时间:2023-11-10 09:21

交易引擎介绍

什么是BigTrader

BigTrader是宽邦科技推出的致力于为用户提供便捷、功能强大的量化策略编写、回测分析、仿真模拟和实盘交易的工具。在量化研究的过程中,量化研究员(宽客)需要在历史数据里回放模拟,验证策略效果,这就是BigTrader交易引擎的应用场景。

交易引擎有哪些优势

  • 回测研究贴近真实 交易,最大程度保证回测的准确性
  • 回测研究、模拟交易、实盘交易为同一套代码,无需做任务修改
  • 交易引擎是一个有体系、结构化的工程框架,能大幅提升策略开发的效率

支持的品种

股票、基金、期货、可转债、指数,未来会支持期权、债券、两融

交易频率

更新时间:2023-10-11 10:51

BigQuant策略技巧分享之参数调节

前言:不知不觉在BigQuant平台上也有5个月的时间了,在这期间也订阅了一些策略,然后跟着实盘跑了一下,有赢有亏!订阅的策略,主要是看不到历史回测,单从年化收益来判断策略的未来趋势总有些没有底气,觉得还是开发自己策略比较靠谱!

先给大家分享下我的学习过程吧

  • 了解BigQuant是什么
  • 在宽客学院学习BigQuant文档
  • 写出自己的策略,最好掌握几种策略框架。
  • 训练寻找合适的因子

下面重点介绍参数调节

  • 初始资金 初始资金大,遇到小盘股,容易对盘面造成影响,或者实盘操作困难。 初始资金小,如分散资金到多个股,交易成本增高,从而影响收益比例。

更新时间:2023-06-02 11:47

大宗商品CTA多因子模型构建及回测

摘要

中国商品期货市场近30年来取得历史性突破和跨越式发展。近年来,伴随股票市场多因子选股策略的风靡,越来越多的期货界投资人士,在尝试使用多因子框架构建商品市场的CTA策略。这类策略的核心是找到各类可以影响商品市场价格涨跌的公共因子,如资产动量、波动率、宏观基本面等,构建统一框架来评估资产价格上涨、下跌的潜力,进而构建商品市场的组合投资策略,多因子策略是近年来CTA策略的一个重要分支。本文主要尝试对多因子CTA策略构建中一些常用的因子进行测评,并试图构建一个基本的多因子CTA策略,以深入洞察该类策略的运作,供投资者参考

测试的因子包括技术面因子以及宏观基本面两类因子。技术面因子采用横

更新时间:2022-10-08 10:30

回测交易

涉及国内主要品种的不同的频率的回测与交易


\

更新时间:2022-07-31 01:58

Deep Alpha 研讨会-互动问答环节

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}Q1:现在海内外量化实践有什么代际差吗?海外接下来量化方向除了另类数据应用,还有什么发展潮流?他们对于国内量化市场是怎么判断的?

**关子敬:**在我看来海内外最主要的差别是:国内投资人是偏向喜欢直接对股价做预测,而海外直接预估股价比较少,主要做填充模型(imputation model),针对遗失数据做估算,特别是在

更新时间:2022-04-27 01:48

文档整合


AI量化策略快速理解

https://bigquant.com/wiki/doc/celve-Uu3N6WbJNJ

更新时间:2022-04-11 11:00

自动交易如何增加交易利润?


作者:Harry Nicholls编译:caoxiyang


导语

你有没有想过如何使你的交易策略自动化并增加交易利润?在本文中,我们将介绍算法交易的基本知识,好处和风险。准备好开始自动交易吧! 很多技术分析都涉及观察信号指标,然后根据信号进行交易。正如我在之前的文章“一个让优秀交易者高于其他交易者的行为”中所讨论的那样,你应该在你的交易日志中记录下你所有的交易,当你获得更多的经验时,你应

更新时间:2021-08-24 05:46

StockRanker实盘交易的那些事儿

作为平台的铁杆用户,本文主要分享下使用StockRanker模型来实盘交易的一些经验。

在机器学习领域,预测的结果依赖于:数据、算法和特征,因此真正好的策略一定是特征选择和特征构建非常好。

平台的StockRanker模型策略生成器只是搭建了一个策略框架,输入不同的特征就可以看到不同的策略效果。去年的时候,我构造出了大约10个特征进行回测,从12年到16年底,平均年化收益达到了76%,因此就打算先用一部分小资金实盘,进一步验证特征的有效性。

因为政策原因,目前国内股票实盘交易接口并没有开放,因此量化平台都不会说自己平台上可以实盘交易,免得监管部门叫去喝茶。于是只有手动下单,好在股票持仓时

更新时间:2021-08-24 05:46

使用bigexpr表达式引擎开发AI策略

策略案例

https://bigquant.com/experimentshare/05251c753111424eaff32648838ac24f

\

更新时间:2021-07-30 07:26

分页第1页
{link}