损失函数

损失函数在金融领域扮演着至关重要的角色,它是量化金融风险、优化投资策略和评估模型性能的关键工具。通过计算预测值与实际值之间的偏差,损失函数能够精确地反映出金融机构因市场波动、信用风险等因素而可能遭受的经济损失。这种量化的损失不仅为风险管理提供了有力依据,还有助于金融机构在制定投资策略时更加科学、合理地平衡收益与风险,从而实现资产的最大化增值。同时,损失函数也是评估金融模型性能的重要指标,通过不断优化损失函数,金融机构能够提升模型的预测能力和稳健性,以更好地应对复杂多变的金融市场环境。

【代码报错】DNN选股模型训练后在测试集上的结果异常,如何排查和优化?

DNN训练完成后测试机让没有计算出得分

通过克隆社区DNN选股,训练的模型能用在测试集上,在上面优化特征及调整损失函数后,出现模型训练完了,但是在测试集上全部为0,反复排查后找不到原因,因为这块被封装了,社区那位同学遇到同类问题,帮忙看看,非常感谢

https://bigquant.com/codesharev3/ba9e579f-7079-4ed9-bccb-d898619a87fb

\

更新时间:2024-10-10 10:56

Deep Residual Networks学习(二)

通过上次在Cifar10上复现ResNet的结果,我们得到了上表,最后一栏是论文中的结果,可以看到已经最好的初始化方法(MSRA)已经和论文中的结果非常接近了!今天我们完全按照论文中的实验环境,复现一下ResNet论文中的结果。

上次的论文复现主要和原文中有两点不同:

Data Augmentation

Cifar10中的图像都是32X32的,论文中对测试集中的每张图

更新时间:2024-07-10 09:23

超参寻优使用简介

导语

在机器学习模型建立过程中通常需要对模型中的超参数进行优化,本文给大家介绍超参优化模块,它可以帮助大家对我们平台上的机器学习模型进行超参数优化,让你的收益更上一层楼

超参寻优理论简介

在机器学习里,我们本质上是对损失函数进行最优化的过程。过程类似下面的曲面,算法试图去寻找损失曲面的全局最小值,当然损失曲面实际中不一定是凸曲面, 可能会更加凹凸不平,存在多个局部高低点。

{w:100}我们还是回到主题,讲述的重点在于超参数

更新时间:2024-06-12 05:52

关于线性回归、岭回归和Lasso回归的综合入门指南

https://bigquant.com/experimentshare/c451f287332a411cb4c7756c457318f6

\

更新时间:2024-06-12 05:48

63rd Meetup

量化模型:

  • 如何通过python做出量化估值模型?
  • 学习线性代数和解析几何对建立模型的优势是什么?
  • 如何在XGboost中实现华泰研报关于有序回归作为损失函数和评价函数?

策略优化:

  • 为什么策略的预测结果通常不是第一只收益最高?
  • 为什么StockRanker的训练次数不是越大越好?
  • 概率在量化策略中的应用如何合理化实施?

策略实盘:

  • 如何快速判断策略是否能用于实盘?即未来也能带来收益

量化学习:

  • 如何入门量化交易?
  • 量化交易难度怎么样?



\

双十一活动预热:


**徐啸寅

更新时间:2024-06-07 10:55

如何在全连接层中自定义swish激活函数

问题

如何在全连接模块中自定义swish激活函数的代码

\

视频

https://www.bilibili.com/video/BV1DL4y1w7sb?share_source=copy_web

策略源码

[https://bigquant.com/experimentshare/9f1dae69e055429c9922b4f5d038361a](https://bigquant.com/experimentshare/9f1d

更新时间:2024-06-07 10:55

xgboost自定义目标和评估函数

https://bigquant.com/experimentshare/85eb463354e54a9695eddc0c570040e6

\

更新时间:2024-06-07 10:55

超参寻优调参顺序

策略案例


https://bigquant.com/experimentshare/fe8ec83484ca44148602d39a58545d75

\

更新时间:2024-06-07 10:55

逻辑回归和交叉熵

策略源码:

{{membership}}

https://bigquant.com/codeshare/e9c1b98b-e596-4e90-941d-cdb93af92c2e

\

更新时间:2024-06-07 10:55

深度学习实践经验汇总

写在前面:

本文原载于how-to-start-a-deep-learning-project,并且在机器之心上有翻译(如何从零开始构建深度学习项目?这里有一份详细的教程)。

忽略中英文的标题,因为这并非是一个入门的详细教程,而是在深度学习应用中各个步骤阶段

更新时间:2024-05-20 02:09

【历史文档】算子样例-超参寻优使用简介

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 09:05

文章回测报错:华泰研报:在XGboost中实现关于有序回归作为损失函数和评价函数

https://bigquant.com/college/courses/course-v1:public+2023110601+110601/courseware/7708009442174480802b3dd339f4ede0/45dafc16ea744216af376a7dc2961fa5/

老师您好,

我学习上面的视频文章,想试运行代码,但运行不下去,没办法回测,是我哪里没有配置对吗?谢谢老师!

  • \

    
    
    # 我们取前0.6的数据量作为训练集
    date = data['date'].unique

更新时间:2023-12-08 08:18

训练过程中报错,请问该怎么解决

https://bigquant.com/codeshare/10296b06-11cf-475f-80e7-81b7f0fbc5d5

\

更新时间:2023-11-27 06:17

请问如何搭建简单的resnet

问题

请问如何搭建简单的resnet

就给我展示最小单元好了

更新时间:2023-10-09 08:20

请教dl中一些问题

问题

  1. 如何设置训练步长,在训练模块中没有这个选项
  2. 如何设置验证集,并打印loss、mae等,按照模板智能看训练集的

{w:100}{w:100}

验证集通过这个端口传入,构造方法和训练集一样。只需要设定开始和结束的日期。

步长可以通过

![{w:100}{w:100}](/wiki/api/attachments.redirect?id=276f2f17-0d2e

更新时间:2023-10-09 07:35

Tabnet如何实现分类任务

https://bigquant.com/experimentshare/75aff243f241447da1d1994ed9d29c44

如何实现分类任务啊,怎么在原有策略上修改

更新时间:2023-10-09 07:05

纯代码参数优化

可以发一个纯代码模型下参数优化的策略例子么?想学习一下纯代码下的参数寻优

更新时间:2023-10-09 02:22

分享一个可视化深度学习建模的例子

策略案例

https://bigquant.com/experimentshare/9426627188af4f488644532c01328c14

\

更新时间:2022-11-20 03:34

xgboost自定义目标和评估函数

https://bigquant.com/experimentshare/648ff204e53d44059c2d726e9219cfa3

\

更新时间:2022-04-21 06:21

xgboost自定义目标和评估函数

https://bigquant.com/experimentshare/85eb463354e54a9695eddc0c570040e6

\

更新时间:2022-03-31 18:20

金工深度研究:_人工智能44,深度卷积GAN实证

摘要

W-DCGAN模型可用于多资产金融时间序列生成,效果良好

本文探讨GAN的重要变式——DCGAN(深度卷积生成对抗网络)在生成多资产金融时间序列中的应用。原始GAN模型存在固有缺陷,DCGAN和WGAN分别从网络结构和损失函数的角度提出改进,将两种改进方案融合可得到W-DCGAN模型。测试各模型对多资产金融时间序列的生成效果,并采用9项单资产序列指标和5项多资产序列指标评价生成质量。结果表明DCGAN表现不理想,结合W距离损失函数的W-DCGAN效果好且略优于WGAN,W-DCGAN能较好地复现出真实序列的各项典型化事实。

**DCGAN的核心思想是针对网络结构改进原

更新时间:2021-11-26 07:50

机器学习常见算法

导语

机器学习里面究竟有多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。

回归算法

在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即 线性回归逻辑回归

线性回归就是我们前面说过的房价求解问题。如何拟合出一条直线最佳匹配我所有的数据?一般使用“最小二乘法”来求解。“最小二乘法”的思想是

更新时间:2021-08-18 06:37

分页第1页
{link}