模型训练

从金融角度看,模型训练是利用历史数据,通过特定算法构建并优化数学模型的过程。其目的是揭示隐藏在海量数据中的规律,并预测未来趋势。在金融风险评估、投资策略制定、市场预测等核心领域,模型训练发挥着至关重要的作用。它能够将复杂的金融现象转化为可量化、可操作的数学表达,帮助决策者规避风险,发现价值投资机会,以及把握市场动态。随着数据量和计算能力的不断提升,模型训练在金融领域的应用将越来越广泛,成为推动金融行业创新和发展的重要驱动力。

【平台使用】如何在 Python 模块中进行机器学习训练和预测?

请工程师给一个例子使用 python 模块,在python模块里做机器学习训练和预测

测试别的机器学习的模型,怎么操作,我看这里有一些,拉过去就可以了,这里没有的呢,只能用纯代码模式测试吗

请工程师给一个例子使用 python 模块,在python模块里做机器学习训练和预测

更新时间:2025-01-02 01:30

【平台使用】如何保存和读取keras模块训练的模型?

Keras 模型训练&预测 (v5) 这个模块训练的模型应该如何保存和读取

更新时间:2024-12-02 01:41

两个问题求解

1,训练和回测用同样的时间段,得到的结果依然很差?

2,在训练模式中,用回归选项就报错?

\

更新时间:2024-06-18 12:38

Deep Learning with Python 终于等到你!

年初就一直在等啦

终于等到这本书

分享一下


此书的代码下载地址:https://github.com/fchollet/deep-learning-with-python-notebooks

![](/community/uploads/default/original/3X/c/c/cc94b84a373c66d820177c480765c8ec2467c73d

更新时间:2024-06-12 06:16

零基础《AI挑战虚拟股票预测大赛》入门教程

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-12 06:00

监督式机器学习算法的应用:择时

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


\

导语

《Machine Learning for Stock Price Forecasting》是Ali El-Shayeb撰写的机器学习系列文章 ,本文主要介绍其第二部分内容——《监督式机器学习算法的应用》,并将其思想和代码应用在中国股票市场,开发出具有择时功能的监督式机器学习算法,最后进行策略回测。对此感兴趣的小伙伴可以直接在

更新时间:2024-06-12 05:57

深度学习在期货高频上的应用

问题

深度学习在期货高频上的应用

策略源码

8月19日Meetup问题模板:

https://bigquant.com/experimentshare/f58dbfb388454407b8a2b99eb14cf1ea

\

更新时间:2024-06-07 10:55

LSTM+CNN深度学习预测股价

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/c13d6baefe5d4c75bb87eea9364b0f75

\

更新时间:2024-06-07 10:55

如何在全连接层中自定义swish激活函数

问题

如何在全连接模块中自定义swish激活函数的代码

\

视频

https://www.bilibili.com/video/BV1DL4y1w7sb?share_source=copy_web

策略源码

[https://bigquant.com/experimentshare/9f1dae69e055429c9922b4f5d038361a](https://bigquant.com/experimentshare/9f1d

更新时间:2024-06-07 10:55

如何计算板块收益率构造模型训练标注和模型过滤

问题

如何计算板块收益率构造模型训练标注和模型过滤

视频

[https://www.bilibili.com/video/BV1p8411t7LH/?vd_source=ecd29bbd04cbefdfa426167c55241973&t=0.3](https://www.bilibili.com/video/BV1p8411t7LH/?vd_source=ecd29bbd04cbefdfa426167c55241973&

更新时间:2024-06-07 10:55

深度学习在期货高频上的应用

8月19日Meetup问题模板:

https://bigquant.com/experimentshare/f58dbfb388454407b8a2b99eb14cf1ea

\

更新时间:2024-06-07 10:55

已解决:stockranker训练到第9轮报错

https://bigquant.com/codesharev2/8a7c55c5-b437-4d23-9f53-47d0f41fbd98

\

更新时间:2024-05-24 09:17

121-基于StockRanker的AI选股策略

策略介绍

本策略使用StockRanker算法,通过在多个因子/特征的数据上训练,旨在从大量股票中识别并排序那些未来表现可能最优异的股票。

策略流程

  1. 特征选择:输入对股票价格有显著影响的多维度因子,可以是包括基本面、技术指标、情绪指标等等
  2. 预测目标:预测未来 5 日收益率
  3. 数据抽取和处理:抽取和处理数据
  4. 模型训练:应用StockRanker算法,训练模型来预测股票未来上涨概率。StockRanker返回一个相对分数(score),分数越大,预测未来涨幅越大。注意此 score 绝对值没有意义。
  5. 仓位分配:买入 score 靠前的股票,越靠前,仓

更新时间:2024-05-23 07:29

编写策略/AIStudio

简单介绍

AIStudio是BigQuant平台以AI为核心的Cloud IDE,可以用于量化投资数据分析、因子挖掘、模型训练、回测和交易以及更广泛的程序开发和AI模型开发训练等。


快速入门

启动AIStudio

点击顶部导航栏中的【编写策略】即可启动AIStudio,或点击AIStudio超链接直接跳转。

初次启动可能需要一些时间,请耐心等待。

启动过程中可以点击"签到领宽币",获得50宽币的奖励。


![加载页面](/wiki

更新时间:2024-05-22 15:05

用支持向量机-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 10:24

用线性-回归算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 07:17

多层感知器回归模型案例


本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

[https://bigquant.com/experimentshare/42bf93884b1246ad83c2874f06765732](https://bigquant.com/experimentshare/42bf93884b12

更新时间:2024-05-20 06:39

基于大宽可视化的深度学习Hello World!

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

https://bigquant.com/experimentshare/421fbaa682a04d6bacf4d2f1f47b54c6

\

更新时间:2024-05-20 06:04

用线性随机梯度下降-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 02:15

StockRanker模型可视化

导语

本文介绍了如何用BigQuant的策略生成器进行StockRanker模型可视化。

使用StockRanker模型

在模型训练之后即可看到模型可视化输出, 包括特征重要性、以及树的分支情况:

[https://bigquant.com/codesharev2/

更新时间:2024-05-20 02:09

用梯度提升树-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 10:35

利用深度学习技术预测股票价格

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 10:28

使用BigQuant平台实现多层感知器-分类算法

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 10:24

深度学习在期货高频上的应用示例

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 02:54

基于卷积神经网络的多因子预测

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/5z65lqo5y2356ev56we57up572r57uc55qe5asa5zug5a2q6ycj6ikh-3hXXZIwYtI

策略案例

[https://bigquant.com/experimentshare/86296263b27

更新时间:2024-05-16 06:36

分页第1页第2页第3页
{link}