模型训练

从金融角度看,模型训练是利用历史数据,通过特定算法构建并优化数学模型的过程。其目的是揭示隐藏在海量数据中的规律,并预测未来趋势。在金融风险评估、投资策略制定、市场预测等核心领域,模型训练发挥着至关重要的作用。它能够将复杂的金融现象转化为可量化、可操作的数学表达,帮助决策者规避风险,发现价值投资机会,以及把握市场动态。随着数据量和计算能力的不断提升,模型训练在金融领域的应用将越来越广泛,成为推动金融行业创新和发展的重要驱动力。

StockRanker模型可视化

导语

本文介绍了如何用BigQuant的策略生成器进行StockRanker模型可视化。

使用StockRanker模型

在模型训练之后即可看到模型可视化输出, 包括特征重要性、以及树的分支情况:

[https://bigquant.com/codesharev2/

更新时间:2024-05-20 02:09

用梯度提升树-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 10:35

利用深度学习技术预测股票价格

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 10:28

使用BigQuant平台实现多层感知器-分类算法

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 10:24

深度学习在期货高频上的应用示例

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 02:54

利用CNN对股票“图片”进行涨跌分类——一次尝试

首先解释一下标题: CNN:卷积神经网络(Convolutional Neural Network), 在图像处理方面有出色表现,不是被川普怒怼的那个新闻网站; 股票涨跌:大家都懂的,呵呵; 股票图片:既然使用CNN,那么如果输入数据是股票某个周期的K线图片就太好了。当然,本文中使用的图片并不是在看盘软件上一张一张截下来的,而是利用OHLC数据“画”出来的; 尝试:这个词委婉一点说就是“一个很好的想法^_^",比较直白的说法是“没啥效果T_T”。


进入正题: 首先是画出图片。本文目前是仿照柱线图画的。 ![{w:100}](/wi

更新时间:2023-11-28 10:03

了解AIStudio

AIStudio是BigQuant平台以AI为核心的Cloud IDE,可以用于量化投资数据分析、因子挖掘、模型训练、回测和交易,以及更广泛的程序开发和AI模型开发训练等。

/wiki/static/upload/31/315c1087-6d07-491a-90ef-43e717997077.mp4

从这里开始

关键概念

\

更新时间:2023-09-07 03:12

怎样用自定义函数,计算因子用于模型训练和预测?尤其是提取高频原始因子进行复杂再加工后得到的因子,怎么使用?按文档提供的方法,貌似可以提取因子,但详细比对,数据是错的,估计是与代码列表的date,ins

https://bigquant.com/codeshare/1e2b64b4-0a3a-4c86-b742-46a14e72ee0e

\

更新时间:2023-06-30 15:58

AIStudio FAQ

AIStudio 使用常见问题

更新时间:2023-05-16 10:05

如何对AI量化策略进行管理?三步走

导语

大部分初学AI-量化的同学做选股策略的做法都是简单粗暴将全市场的股票数据都放入模型训练, 然后企图训练出一个万能模型-图灵机, 寄希望于仅仅只通过暴力的数据挖掘,或者某些因子,就可以打造出一个适应于 任何行情的选股模型--圣杯。

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}但遗憾的是,A股市场中的数据噪音是很大的,不同的市场环境,不同的因子的选股效

更新时间:2023-05-06 07:34

ChatGTP教程 - OpenAI语言模型的全面指南

用ChatGPT生成的ChatGPT教程

更新时间:2023-02-03 21:30

用k-近邻分类算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/7f7021993a9f40149189be939e15c882

\

更新时间:2023-01-03 07:44

AI+涨停板特征提取

策略案例

https://bigquant.com/experimentshare/6ac00fc386f74acb886b8168d7809b98

\

更新时间:2022-11-20 03:34

分享一个可视化深度学习建模的例子

策略案例

https://bigquant.com/experimentshare/9426627188af4f488644532c01328c14

\

更新时间:2022-11-20 03:34

FactorVAE:基于变分自编码器的动态因子模型

摘要

{w:100}公众号遴选了各大期刊前沿论文,按照理解和提炼的方式为读者呈现每篇论文最精华的部分。QIML希望大家能够读到可以成长的量化文章,愿与你共同进步!

本期遴选论文 标题:FactorVAE: A Probabilistic Dynamic Factor Model Based on Variational Autoencoder for Predicting Cross-sectional Stock Returns

更新时间:2022-08-31 06:22

机器学习流程和算法介绍及金融领域应用实例-长江证券-20180207

摘要

机器学习问题和其流程

机器学习问题本质上在于找出使得经验风险泛函(样本误差)最小的建模流程,基本的流程可以分为特征工程、模型训练和模型融合。本篇就上述三个过程,给出相关算法的介绍,并补充了之前系列报告中未详细介绍的内

机器学习三大步骤

特征工程包含特征构建、特征提取和特征选择三个过程,以选择相对最优的特征空间。特征工程往往会采用无监督和有监督的机器学习算法。机器学习模型可以分为线性模型、树模型和深度学习模型。线性模型主要体现了数据中的线性关系,如输入与输出的线性关系,点集的线性可分;树模型可以很好的捕捉输入与输出的非线性关系,和线性模型相辅相成。一些改进的随

更新时间:2022-08-31 01:53

关于模型训练的一点简单想法:以DNN和StockRanker对比为例

作者:donkyxote

策略思想

基于17个短期因子,其中8个量价因子,9个均线因子。训练集使用2005-01-04至2020-06-01日,每个交易日买入模型当日预测结果排名靠前的1只A股股票,次日卖出。

StockRanker模型

原有模型是基于BQ提供的Stockranker机器学习算法:


![图 1:stockranker-2021年1月4日至2022年1月21日的模拟实盘结果{w:100}{w:100}](/wiki/api/attachments.redirect?id=bb5b3d09-3e20-4840-b5e0-2220d7f55

更新时间:2022-06-22 14:58

https://bigquant.com/community/t/topic/164619新闻文本情感文章里的策略报错

https://bigquant.com/experimentshare/5f74d02dff0e45d595f7494edb417019

\

更新时间:2022-06-15 05:58

文档整合


AI量化策略快速理解

https://bigquant.com/wiki/doc/celve-Uu3N6WbJNJ

更新时间:2022-04-11 11:00

GBDT多因子选股策略

本例使用GBDT算法进行模型训练和数据预测

  1. 新建可视化AI模板策略
  2. 在左侧模块导航栏“机器学习”中拖出“GBDT训练”和“GBDT预测”模块替换原有的 StockRanker 训练模块和 StockRanker 预测模块

本例设置“GBDT训练”中的参数:

损失函数类型:'reg:linear',

评价指标:'rmse',

模型:'gbtree'

[https://bigquant.com/experimentshare/08e84d706db74d5ba490658f1b92628b](https://bigquant.com/experimentshare/08e8

更新时间:2022-03-03 09:04

超参搜索状态保存

test h1

test h2

test h3

test h1


\

更新时间:2021-11-30 03:40

幻方量化徐进解析深度学习量化与萤火虫Lab

2021世界人工智能大会于2021年7月8日至10日在上海世博中心和上海世博展览馆同时举行。会中幻方量化合伙人徐进探讨了如何使用量化模型和深度学习在股市中赚钱的路径。

徐进提到,与传统股票定价不同,量化通过输入获取的信息,包括行情数据、上市公司财务数据,还有另类数据,比如新闻舆情、产业链等,进行模型训练,利用深度学习对股票进行定价。

在徐进看来,在这个过程中,需要处理很多关键细节,细节是魔鬼!以时间序列预测模型为例,包括数据清洗、规划处理、防止过拟合、 避免未来函数等,大量的细节决定了量化能否赚钱,并不是简简单单就能成功的。“只要你对市场、数据充分了解之后,才能得出比较好的赚很多钱的结果。

更新时间:2021-11-03 09:41

LSTM模型构建

导语

本文将介绍LSTM模型的原理与构建其选股模型的流程

LSTM简介

循环神经网络(RNN)

传统的神经网络是基于所有时刻的输入和输出间相互独立的假设来生成已学习数据的静态模型,并根据新接受的数据进行运算。但在很多情景中,如语音识别中预测当前的单词的含义,需要知道之前的输出结合上文语境做出判断,循环神经网络(Recurrent Neural Networks,简称 RNN)可以用于解决这类问题。 循环神经网络也被称为递归神经网络是受到人类对于近期事件会有所保留的背景而启发,循环神经网络会随着数据的输入生成动态模型。 理论上,RNN可以支持无限长的时间序列,然

更新时间:2021-07-30 08:19

用线性随机梯度下降-回归算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/7dcb3fe1da07466aa334e3c202a7704f

\

更新时间:2021-07-30 08:12

基于XGBoost的价值选股策略代码

本代码完整版一共包括三部分:数据、算法、回测交易。 由于该策略与机构有一些合作,我们只放出了数据和算法。希望大家能够理解!

策略案例

https://bigquant.com/experimentshare/5a93201876eb401e998867e0b5106175

\

更新时间:2021-07-30 08:09

分页第1页第2页第3页
{link}