本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 02:00
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 02:00
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 01:58
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 01:52
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 09:51
完成了数据处理,接下来就可利用平台集成的各算法进行模型训练和模型预测啦。本文将详细介绍“模型训练”、“模型预测”两大模块操作、原理。
模型训练和模型预测是AI策略区别于传统量化策略的核心,我们通过模型训练模块利用训练集因子和标注数据构建一个模型,并通过模型预测模型将预测集的因子数据输入模型进行预测。 \n
在模块列表的 机器学习 、 **深度学习
更新时间:2024-05-15 09:51
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 09:05
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 07:49
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 06:34
/* 使用DAI SQL为量化模型预测生成标签数据。标签反映了未来5日的收益率,并且被离散化为20个桶,每个桶代表一个收益率范围。这样,我们就可以训练模型来预测未来的收益率范围,而不仅仅是具体的收益率值。
更新时间:2024-02-01 08:26
/* 使用DAI SQL为量化模型预测生成标签数据。标签反映了未来5日的收益率,并且被离散化为20个桶,每个桶代表一个收益率范围。这样,我们就可以训练模型来预测未来的收益率范围,而不仅仅是具体的收益率值。
更新时间:2024-01-31 03:56
首先解释一下标题: CNN:卷积神经网络(Convolutional Neural Network), 在图像处理方面有出色表现,不是被川普怒怼的那个新闻网站; 股票涨跌:大家都懂的,呵呵; 股票图片:既然使用CNN,那么如果输入数据是股票某个周期的K线图片就太好了。当然,本文中使用的图片并不是在看盘软件上一张一张截下来的,而是利用OHLC数据“画”出来的; 尝试:这个词委婉一点说就是“一个很好的想法^_^",比较直白的说法是“没啥效果T_T”。
进入正题: 首先是画出图片。本文目前是仿照柱线图画的。 ![{w:100}](/wi
更新时间:2023-11-28 10:03
自己通过import xgboost可以实现自定义目标函数,但是和平台的xgboost模块相比,自己的import xgboost比平台的xgboost模块慢了很多,时间花费几乎是30倍差距。
那么,如何基于平台的xgboost,实现自定义目标函数的定义呢?
\
更新时间:2023-10-09 07:41
验证集通过这个端口传入,构造方法和训练集一样。只需要设定开始和结束的日期。
步长可以通过
![{w:100}{w:100}](/wiki/api/attachments.redirect?id=276f2f17-0d2e
更新时间:2023-10-09 07:35
\
更新时间:2023-10-09 07:09
三种构建大盘风控指标的方法关于LSTM+CNN的模型进行大盘风控的策略代码未找到,能否提供一下,谢谢。
https://bigquant.com/wiki/doc/dapan-zhibiao-fangfa-MoB3kNcAMG
更新时间:2023-10-09 06:28
更新时间:2023-10-09 06:22
更新时间:2023-10-09 03:26
麻烦工程师兄弟看一下
更新时间:2023-10-09 02:46
AIStudio是BigQuant平台以AI为核心的Cloud IDE,可以用于量化投资数据分析、因子挖掘、模型训练、回测和交易,以及更广泛的程序开发和AI模型开发训练等。
/wiki/static/upload/31/315c1087-6d07-491a-90ef-43e717997077.mp4
\
更新时间:2023-09-07 03:12
更新时间:2023-06-30 15:58
AIStudio 使用常见问题
更新时间:2023-05-16 10:05
大部分初学AI-量化的同学做选股策略的做法都是简单粗暴将全市场的股票数据都放入模型训练, 然后企图训练出一个万能模型-图灵机, 寄希望于仅仅只通过暴力的数据挖掘,或者某些因子,就可以打造出一个适应于 任何行情的选股模型--圣杯。
但遗憾的是,A股市场中的数据噪音是很大的,不同的市场环境,不同的因子的选股效
更新时间:2023-05-06 07:34
用ChatGPT生成的ChatGPT教程
更新时间:2023-02-03 21:30
更新时间:2023-01-03 07:44