更新时间:2022-11-20 03:34
1.科学的投资体系。基于处理后的各类数据,通过数学建模和回测将市场信息进行量化,从数据中解读背后蕴含的市场规律,捕捉价格波动过程中的交易机会,真正做到可追溯、易复盘、能验证、迭代快。
2.应用前沿技术。大数据时代,积极应用机器学习、深度学习等人工智能新兴技术,以实现强大的信息搜集与处理能力,及时快速地跟踪市场变化,不断捕捉市场上能够提供超额收益的投资机会。
3.剥离情绪影响。严格执行量化投资模型给出的投资建议,决策信息透明度高、纪律性强,能有效规避人类主观认知偏差以及克服情绪对决策的影响,准确客观评价投资机会,降低管理人的道德风险。
4.统观信息全局。通过对尽可能全面、完整的海量
更新时间:2022-10-27 03:25
分享头部量化私募团队、策略、深度资料等
\
更新时间:2022-10-10 09:45
期货量化交易有什么特点呢?
1.速度快。交易市场如战场,尤其是在开盘的时候,很多品种的盘口特别活跃,成交量很大,这就是拼速度的时候。很多量化交易公司的交易办公室都在交易所附近,他们凭借速度的优势,频繁地买进卖出,拥有速度优势。
2.交易周期小。交易就是低买高卖,高抛低吸,是一个赚差价的游戏。谁都不愿意为他人做嫁衣,谁也不愿意为他人抬轿子。现在很多量化交易公司的员工都是名牌大学的高才生,他们拥有高智商,高技术,使用3秒的交易周期都嫌长。普通散户一开仓,量化交易就平仓了。因为别人在数着你的单子呢!
3.仓位灵活。很多量化交易公司都在做短线,导致许多品种早盘在大幅度的增仓,而收盘时又变成
更新时间:2022-09-20 01:27
\
更新时间:2022-09-18 13:23
文献来源:Leippold, M., Wang, Q. & Zhou, W. (2021). Machine-Learning in the Chinese Stock Market. Journal of Financial Economics.
推荐原因:随着机器学习在金融和经济领域的应用迅速兴起,越来越多的学者利用机器学习工具研究股票的截面和时间序列预测。而中国股票市场历史较短,制度依然处于不断完善的阶段,有着自身的特殊性。本文根据中国市场的特征构建了一个全面的股票收益预测因子集,并利用几大流行的机器学习算法进行实证分析。经过CSPA条件预测能力检验,作者发现神经
更新时间:2022-08-31 08:45
\
更新时间:2022-08-25 02:16
\
更新时间:2022-08-25 02:16
更新时间:2022-07-30 03:48
1.https://bigquant.com/live/strategy?notebook_id=4ab011f4-c320-11ec-98fa-361fbc3525fa
2.https://bigquant.com/live/shared/strategy?id=80110
3.https://bigquant.com/live/shared/strategy?id=79204
选择最近市场表现比较活跃的股票;
检测股票最近资金流量的变化;
用多因子策略选股;
最近表现比较好
\
更新时间:2022-07-10 14:37
已解决
更新时间:2022-04-28 06:59
更新时间:2022-03-09 15:19
更新时间:2022-03-04 06:37
说到量化投资和研究,很多人有一个基本认知,就是通过数据观察和分析,提出假设,然后通过回测来验证假设。通过验证之后,再上实盘验证。当然,其中有一些深入的细节。比如回测可以是样本内+样本外。这里有篇学术论文,其中一个观点就是大部分人跑的回测都没什么意义。论文的作者是前AQR的机器学习负责人,康奈尔大学的机器学习教授,畅销教科书《 Advances in Financial Machine Learning》作者。论文题目:TACTICAL INVESTMENT ALGORITHMS。
根据历史证据,有三种基本方法来测试投资策略的有效性:a)向前走法;b)重
更新时间:2022-03-01 02:36
更新时间:2022-02-21 09:48
更新时间:2021-12-14 13:12
更新时间:2021-04-22 03:15