https://bigquant.com/experimentshare/75aff243f241447da1d1994ed9d29c44
如何实现分类任务啊,怎么在原有策略上修改
更新时间:2023-10-09 07:05
更新时间:2023-10-09 06:35
请问:
比如,我开发一个策略,回测两年时间,前一年的表现很好,后一年的表现很差,那么该如何优化让策略长期表现一致呢?
谢谢
更新时间:2023-10-09 06:03
https://bigquant.com/wiki/doc/shizhi-celve-v-10-Jhc4IN7nXK
直接克隆的知识库-平台使用文档中的样例策略(https://bigquant.com/wiki/doc/shizhi-celve-v-10-Jhc4IN7nXK),回测完全正常。但是模拟交易时,始终不出交易信号。不知道模拟交易时运行各个模块的原理和回测的原理有什么不同?
注:并不是因为22天才调仓的原因,第一天运行都不出信号。感觉在模拟交易时回测模块之前连接的模块运行结果不对,输入给回测模块的数据有误。只是个人猜测。不知道真实原因,请高手指点,谢谢!
模拟交易
更新时间:2023-10-09 03:40
更新时间:2023-10-09 03:40
更新时间:2023-06-01 06:18
作者:woshisilvio
AI量化的玄学- 第一章
如何更有效率的对抗过拟合? 对抗随机性?---
答案:给你个表情自己体会。
https://bigquant.com/wiki/doc/gaishuai-VEmyCgB5uz
![{w:100}{w:100}](/wiki/api/attachments.redirect?id=4a263263-4102-40a0-bddf-71d043
更新时间:2022-12-06 08:23
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
\
更新时间:2022-11-09 01:23
通过策略进行回测时,比如跑一个5年的回测后,通过曲线可以看到后两年的收益比较好,那么在单独对这两年跑回测时,却得不到同样趋势的结果,这是为什么呢?
\
1.有些策略是全仓买入少量股票, 因为时间开仓日不同造成有偶然性,起始的第一天亏钱,或者赚钱 对后续的收益率影响很大。
2.过拟合。
3.有些日期的股票数据有空值,造成选股的收益有差异。
4.基础特征抽取 为了方便计算 因子值,有额外抽取天数占用时间天数,会导致起始回测日期往后偏移几天,开始收益率不同,自然收益率就不同了。
更新时间:2022-11-09 01:23
比如默认运行20次迭代训练,如何选择评估效果最好的一次迭代保存下来?
更新时间:2022-11-09 01:23
更新时间:2022-11-09 01:23
作者:woshisilvio (全文共913字,阅读约需2分钟)
笔者一直疑惑的一点就是 我们的模型每天这样选股,赚钱的效应究竟是随机的,还是可控?
模型有没有真正的学到市场中的规律,挖掘到了alpha? 靠AI模型 来赚钱 究竟靠不靠谱?
对于这些问题,一千位quant就有1000个答案,这里就留给评论区的高人们解惑了。
针对以上问题,之前笔者有分享
更新时间:2022-09-21 07:35
首先祝大家五一快乐。
趁着假期没事,虫哥给大家唠嗑唠嗑实盘中踩的那些坑。
4月不易,且行且珍惜,跑的最好的一个小账户只有一点安慰奖(别笑,差不多一个月工资了…………)。平均下来 每个账户只有5-7%的平均收益,可以看到最近的行情真的不是很好赚钱。
做数据分析和建模的过程中很多时候,我们最害怕和担心的就是为了优化模型,会不自觉引入一些过于复杂的条件拟合
更新时间:2022-09-18 14:10
更新时间:2022-08-31 08:06
机器学习系列报告
本系列报告试图系统全面性的介绍各种不同的机器学习方法,并且结合具体的在投资研究领域应用实例、交易策略及code示例,说明其应用情景和实现方法。机器学习的方法可以分为以下几类:监督学习、无监督学习、深度学习及其他机器学习方法(例如强化学习),对应到具体的模型上数量则更是繁多,目前大部分机器学习模型并未广泛的应用在投研领域,因此本系列主要偏重于在投研领域有应用潜力的模型及方法。此篇将以介绍监督学习方法为主
监督学习模型之回归类模型及其应用
与普通线性回归不同,监督学习中的惩罚回归模型和非参数回归,可以分别用于处理输入变量中存在大量线性相关性关系
更新时间:2022-08-31 01:52
机器学习容易给人“黑箱模型”和“过拟合”的印象,但事实上一些机器学习算法的逻辑和结果都非常直白,而且算法自身带有一套避免过拟合的参数估计机制。众多的实践研究说明,机器学习方法的预测能力大部分情况下都强于线性模型,很值得在量化投资中测试使用。本报告主要讲述机器学习的基本原理和用其来做量化选股的实证结果。
机器学习模型众多,不存在所谓的最强模型,不同的数据,不同的问题适用不同的模型。我们测试了LASSO、SVM、增强型决策树、随机森林等几种常见机器学习方法,最终选择用随机森林,主要是因为它结构简单、参数少、过拟合概率低,同时还具有非常强的样本外预测能力。机器选股模型省
更新时间:2022-08-30 02:27
\
更新时间:2022-08-25 02:16
作者:woshisilvio
相比同样的决策树模型还有线性分类模型,deepAlpha无疑具有更大的可扩展空间。 一般的机器学习模型 一旦出现训练数据量过大,又或者面对一些极值数据样本和极端数据差异过大的情况,模型容易陷入过拟合的状态。 模型比较依赖训练的因子特征,如果因子选择不好,会导致模型学习效果不佳,而且在后期难以通过参数去调整学习的效果。
StockRanker绩效:98个因子
![{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}
更新时间:2022-08-17 00:16
涉及国内主要品种的不同的频率的回测与交易
\
更新时间:2022-07-31 01:58
时序交叉验证方法适用于时间序列数据,能够有效防止过拟合交叉验证是选择模型最优超参数的重要步骤,本文关注传统交叉验证和时序交叉验证的比较。我们采用机器学习公共数据集以及全A选股数据集,分别比较两种交叉验证方法的表现。结果表明,对于时序数据,时序交叉验证方法在训练集上的表现相对较差,但是在测试集上表现更好。传统交叉验证方法面对时序数据表现出较明显的过拟合,而时序交叉验证方法能够有效防止过拟合。借助时序交叉验证的机器学习选股策略能够获得更高并且更稳定的收益。推荐投资者在选择机器学习模型超参数时,使用时序交叉验证方法。 传统交叉验证用于时序数据可能出现未来信息预测历史的“作弊”行为交叉验
更新时间:2022-07-29 06:13
更新时间:2022-06-15 05:58
更新时间:2022-05-22 01:17
交叉验证是选择模型最优超参数的重要步骤,本文关注传统交叉验证和时 序交叉验证的比较。我们采用机器学习公共数据集以及全 A 选股数据集, 分别比较两种交叉验证方法的表现。结果表明,对于时序数据,时序交叉 验证方法在训练集上的表现相对较差,但是在测试集上表现更好。传统交 叉验证方法面对时序数据表现出较明显的过拟合,而时序交叉验证方法能 够有效防止过拟合。借助时序交叉验证的机器学习选股策略能够获得更高 并且更稳定的收益。推荐投资者在选择机器学习模型超参数时,使用时序 交叉验证方法。
更新时间:2022-05-05 09:17