机器学习系列报告
本系列报告试图系统全面性的介绍各种不同的机器学习方法,并且结合具体的在投资研究领域应用实例、交易策略及code示例,说明其应用情景和实现方法。机器学习的方法可以分为以下几类:监督学习、无监督学习、深度学习及其他机器学习方法(例如强化学习),对应到具体的模型上数量则更是繁多,目前大部分机器学习模型并未广泛的应用在投研领域,因此本系列主要偏重于在投研领域有应用潜力的模型及方法。此篇将以介绍监督学习方法为主
监督学习模型之回归类模型及其应用
与普通线性回归不同,监督学习中的惩罚回归模型和非参数回归,可以分别用于处理输入变量中存在大量线性相关性关系
更新时间:2022-08-31 01:52
机器学习容易给人“黑箱模型”和“过拟合”的印象,但事实上一些机器学习算法的逻辑和结果都非常直白,而且算法自身带有一套避免过拟合的参数估计机制。众多的实践研究说明,机器学习方法的预测能力大部分情况下都强于线性模型,很值得在量化投资中测试使用。本报告主要讲述机器学习的基本原理和用其来做量化选股的实证结果。
机器学习模型众多,不存在所谓的最强模型,不同的数据,不同的问题适用不同的模型。我们测试了LASSO、SVM、增强型决策树、随机森林等几种常见机器学习方法,最终选择用随机森林,主要是因为它结构简单、参数少、过拟合概率低,同时还具有非常强的样本外预测能力。机器选股模型省
更新时间:2022-08-30 02:27
\
更新时间:2022-08-25 02:16
作者:woshisilvio
相比同样的决策树模型还有线性分类模型,deepAlpha无疑具有更大的可扩展空间。 一般的机器学习模型 一旦出现训练数据量过大,又或者面对一些极值数据样本和极端数据差异过大的情况,模型容易陷入过拟合的状态。 模型比较依赖训练的因子特征,如果因子选择不好,会导致模型学习效果不佳,而且在后期难以通过参数去调整学习的效果。
StockRanker绩效:98个因子
这样的时序数据,因此,本文提出一种简化的适用于股票数据的Transformer结构,其根据时间嵌入的思想构建,能很好的应用于量化选股中。下面以一个例子来介绍用于股票数据的Transformer体系结构,以及
更新时间:2021-02-03 07:05