随着传统因子研究的深入,通过使用日级别数据已经很难发现能够在传统技术选股因子之外提供额外选股能力的因子了。考虑到传统因子多使用日级别数据刻画股票日间的形态特征,通过引入日内高频数据刻画股票日内的特征也许能够为模型带来新的信息以及Alpha。
这一观点也在本系列前一篇研究(《选股因子系列研究十八——价格形态因子》)中有所印证。本报告主要使用了股票1分钟价格数据构建了相关因子,对于股票高频收益分布特征(方差、偏度以及峰度)进行了刻画。
报告主要分为三部分,第一部分讨论了因子的构建以及计算方式。第二部分从单因子的角度对于因子的选股能力进行了分析。第三部分对比分析了加入高频因子的改进模型以及未加入
更新时间:2021-11-22 08:33
Smart Beta 产品近些年在海外市场规模增长迅速,它和主动量化、指数增强等alpha产品一样,收益来源于资产定价因子的风险溢价,不同之处在于获取因子暴露的方式,往往换手率较低。
我们把A股常用的指数增强策略用到了标普500指数上。用到的alpha因子中只有估值因子在标普500成分股内总体效果显著,但最近三年也有明显衰减。在不扣费情况下,年化超额收益仅0.16%,由此可见标普500指数的市场有效性。
对比看规模最大的20只Smart Beta ETF产品,有十支过去十年相对标普500的年化超额收益为正,Invesco S&P 500 Equal Weight ETF表现最为亮眼,过
更新时间:2021-11-22 07:53
更新时间:2021-07-30 08:12