①投资人与券商充当的角色
②投资人与券商是否对立
这是投顾经常被问到的问题。销售机构在推荐雪球产品时,必定会讲到交易对手方是券商,一些投资人会简单理解自己在和券商做博弈。我自己在第一次接触雪球时也有这样的误解:如果雪球产品跌破敲入价格,保本保息机制就消失了,所以作为对手方的券商特别有动力想股票下跌,这样就不用支付利息了。路演里刘博士很清晰的描述了券商与投资
更新时间:2025-03-13 02:29
本文来自于MSCI研究,原文标题为《因子焦点:防守定位的价值在哪里?》
关键词:MSCI | 全球投资 | 因子投资
作者:Hitendra D Varsani MSCI 研究部 执行董事
Waman Virgaonkar MSCI 研究部 副总裁
1、全球股市在 2021 年第三季度下跌,结束了连续五个季度的正回报。MSCI 动量指数和 MSCI 最低波动率指数在 MSCI ACWI 因子指数中表现领先。
2、虽然股市在去年取得了强劲的回报,但对滞胀的担忧加剧可能会导致防御性定位。在防御性因子中,最低波动率相对于质量的估值处于历史低位。
3、
更新时间:2025-03-13 02:29
更新时间:2025-03-12 06:21
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
ATR即平均真实范围(Average True Range)是由著名的技术分析大师J. Welles Wilder Jr.在1978年提出的,主要用于衡量市场波动性。
ATR是衡量资产价格波动性的指标,表现为价格在一定时间内的平均最大波动范围,主要反映价格波动的强度。
计算方法:
ATR计算基于一定时期内的真实波幅(TR)平均值。
真实波幅(TR)考虑
更新时间:2024-12-05 02:30
更新时间:2024-06-28 08:25
更新时间:2024-06-11 02:38
更新时间:2024-06-07 10:55
【旧版使用说明】此文档为旧版本,相关文档可参考:
https://bigquant.com/wiki/doc/126-KkS3pYVIAH
20210624 Meetup 策略案例
https://bigquant.com/experimentshare/f235e9ce26dc42b9ae9fb57ca6574bf1
\
更新时间:2024-06-07 10:55
【旧版说明】此文档为旧版,相关新版文档可参考:🌟102-第一个AI策略
https://bigquant.com/experimentshare/1c44e0bf56db424d8f2a5e617759a300
\
更新时间:2024-06-07 10:55
如何更方便地提取平台已整理好的因子,我想获取比如某个申万一级行业的波动率指标,数据源返回了价格交易量换手率等信息,波动率需要自己写函数计算了。有没有更方便的方法,像普通标的一样在特征列表里面写想要的因子,再连连线就能搞定
https://www.bilibili.com/video/BV1Pr4y1g79W?share_source=copy_web
[https://bigquant.com/experim
更新时间:2024-06-07 10:55
波动率(Volatility)是金融市场中用于衡量资产价格随时间变化的程度。波动率越高,表示资产价格的变动幅度越大,风险也越高。在股票市场中,波动率通常以历史波动率(基于过去的价格变动)或隐含波动率(基于期权定价)来衡量。
BigQuant的金融市场历史数据因子平台以及AI量化策略编写平台(PC端),可以验证波动率指标因子组成的量化策略。
:简称CCI
所需数据和参数:CCI(high,low,close,tp_per,md_per,const )
指标伪码:
TYP:=(HIGH+LOW+CLOSE)/3;
CCI:(TYP-MA(TYP,tp_per))/(const*AVEDEV(TYP,md_per));
[/wiki/static/upload/66/66738cbe-f3d6-4cfe-b4da-2219d83947a3.pdf](/wiki/static/upload/66/66738cbe-f3d6-4cfe
更新时间:2023-06-13 06:53
本文来自方正证券研究所于2022年5月30日发布的报告《个股波动率的变动及“勇攀高峰”因子构建——多因子选股系列研究之三》,欲了解具体内容,请阅读报告原文,分析师:曹春晓 S1220522030005。
在股票市场中,波动率是最受关注的市场变量之一,波动率不仅自身对股票收益率有较大影响,而且对于市场其他驱动因子也存在较强的影响。个股波动率的增大,既有可能预示着风险的加剧,也可能是股价飙升的前兆,而分辨波动率提升是喜是忧的关键在于,波动率加剧的同时收益率有没有随之提高。
本文中我们将参考学术界的做法,使用收益波动比这一指标,来对收益率随波动率的变化程度加以衡量。通过考察
更新时间:2023-06-13 06:49
本文来自方正证券研究所于2022年8月4日发布的报告《波动率的波动率与投资者模糊性厌恶——多因子选股系列研究之五》,欲了解具体内容,请阅读报告原文,分析师:曹春晓 S1220522030005。
波动率是股票市场最常用的风险度量指标之一,同时波动率因子对于其他驱动因子特别是量价类因子存在较为明显的影响。而波动率本身也存在明显波动,Kostopoulos等(2021)提到使用波动率的波动率来刻画波动率的模糊性。研究发现投资者普遍是波动率的模糊性(以下简称模糊性)的厌恶者,当模糊性较大时,投资者会急于卖出股票,减少在风险资产上的配置。
本文我们通过三种方式衡量模糊性较大时
更新时间:2023-06-13 06:49
更新时间:2023-06-01 06:19
可转债是一种特殊的公司债券,持有者能在一定期限内以转股比例转换成对应的股票,因此其具有期权属性。近年来可转债市场规模持续增长,公募基金有增大可转债投资比例的趋势。本文在合理假设下,基于 B-S 模型建立了可转债估值框架,并由此推算出可转债内含期权的隐含波动率,隐含波动率对辅助判断期权价值有关键作用。为了选出低估值的可转债,本文构建了基于隐含波动率与正股波动率差值的低估值因子,并分不同调仓频率进行分层回测。结果显示因子单调性显著,2016 年以来 TOP 组合年化收益率为25.85%(20 天调仓)。
更新时间:2022-10-28 00:50
盈余公告收益及标准化预期外盈利
盈余公告收益(EAR)刻画了市场对于公司业绩公告中包含的预期外信息的反应情况。EAR的多空收益年化能够达到7.55%,比传统度量业绩超预期的标准化预期外盈利(SUE)因子的多空收益高1.37%。并且EAR和SUE的收益贡献是相对独立的,两因子复合后能够达到12.5%的年化多空收益。
波动率模型以及波动率的程式化特征实证
波动率模型能够准确预测波动率是其在金融各领域应用中的核心诉求。本文罗列了波动率模型中应该包含的各种程式化的因素:明显的持续性,均值回归,非对称性以及外生变量的影响。并使用了道琼斯工业指数来对这些因素
更新时间:2022-10-09 11:04
中国商品期货市场近30年来取得历史性突破和跨越式发展。近年来,伴随股票市场多因子选股策略的风靡,越来越多的期货界投资人士,在尝试使用多因子框架构建商品市场的CTA策略。这类策略的核心是找到各类可以影响商品市场价格涨跌的公共因子,如资产动量、波动率、宏观基本面等,构建统一框架来评估资产价格上涨、下跌的潜力,进而构建商品市场的组合投资策略,多因子策略是近年来CTA策略的一个重要分支。本文主要尝试对多因子CTA策略构建中一些常用的因子进行测评,并试图构建一个基本的多因子CTA策略,以深入洞察该类策略的运作,供投资者参考
测试的因子包括技术面因子以及宏观基本面两类因子。技术面因子采用横
更新时间:2022-10-08 10:30
研究结论
前言:本篇报告为东吴金工“波动率选股因子”系列研究的第二篇,受到学术界“股价波动与股票信息流”关系理论的启发,从“信息冲击”的角度出发,逐步构建了衡量“股票信息分布均匀度”的选股因子。
波动率与信息冲击:学术研究表明,股票价格的波动,与流入股票的信息流直接相关。借鉴前人研究经验,我们提出如下猜想:若股票信息匀速流入市场,则股价的波动相对较小;但若信息流入市场的速度发生剧烈变化,则会造成股价的波动迅速增大。因此,我们认为股价波动率大小的变化幅度,可以用来衡量信息冲击的剧烈程度。
信息分布均匀度UID因子:利用个股分钟数据,在计算每日高频波动率的基础上,构建信息分布均匀度UID因子
更新时间:2022-09-21 07:50
上周波动率因子表现出色,其余价量因子整体表现较好
上周波动率因子表现出色,在沪深300成份股票池的RankIC值超过10%,在中证500、中证1000成份股、全A股票池的RankIC值在20%左右。估值、反转、换手率、beta因子表现接近,在沪深300成份股票池表现平淡,在其余股票池表现较好。成长因子在中证500成份股票池表现较好,在中证1000成份股票池出现回撤。盈利因子在沪深300成份股票池表现较好,在中证1000成份股、全A股票池出现回撤。财务质量、技术因子整体表现尚可。小市值因子在沪深300成份股票池出现回撤,在中证1000成份股、全A股票池表现较好。
主动型量化基金近1个月表现强
更新时间:2022-09-21 07:50