投资决策

投资决策是金融领域的核心活动,它涉及到对资金的分配和资源的优化配置,以期在未来实现资产的增长或者获得其他形式的收益。此过程要求对多种投资工具,如股票、债券、基金、房地产等,进行深入分析,并基于风险承受能力、投资期限、收益预期等因素进行合理选择。成功的投资决策依赖于准确的信息来源、专业的金融知识和对市场的敏锐洞察,旨在实现投资组合的风险分散和收益最大化。在复杂多变的金融市场中,理性、审慎和前瞻性的投资决策是投资者实现财富保值增值的关键。

处理持仓中的"雷"股

导语

通过数据过滤我们可以在预测的时候避开ST股和退市股,但如果很不幸我们的买入持仓中有股票变成了ST股或者退市股时,我们应该如何快速卖出逃脱呢?本节我们就聊聊如何处理持仓中的“雷”股。

我们知道,模板的策略逻辑是卖出每日预测排序靠后的股票。那么尝试思考这样一个场景:某个持仓的股票突然发布公告启动ST或者退市流程,好股变成了“”雷“”股。但是很可能我们的排序预测模型始终意识不到这个雷,而导致此股的打分排序始终不是靠后的。这会导致这些烫手的山芋无法脱手,自爆仓中。不仅导致策略无法卖出此股,还会因其占用了资金而无法买入新的股票。

因此,我们在每天的交易逻辑前加入“雷股判断”,一旦发现持

更新时间:2024-05-22 03:42

2023.5直播代码-敢死队打板

{{membership}}

https://bigquant.com/experimentshare/953563e68f824cb2b4f893f5251cecb3

\

更新时间:2024-05-21 07:21

基于大宽可视化的深度学习Hello World!

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

https://bigquant.com/experimentshare/421fbaa682a04d6bacf4d2f1f47b54c6

\

更新时间:2024-05-20 06:04

机器学习模型可解释的重要及必要性

导语

不管你是管理自己的资金还是客户资金,只要你在做资产管理,每一步的投资决策都意义重大,做技术分析或基本面分析的朋友很清楚地知道每一个决策的细节,但是通过机器学习、深度学习建模的朋友可能就会很苦恼,因为直接产出决策信号的模型可能是个黑盒子,很难明白为什么模型会产出某一个信号,甚至很多保守的私募基金把模型的可解释性放入了事前风控。其实,模型的可解释性是很容易做到的,难点在于研究员是否对模型有深入的思考和理解。

介绍

机器学习领域在过去十年中发生了显著的变化。从一个纯粹的学术和研究领域方向开始,我们已经看到了机器学习在各个领域都有着广泛的应用,如零售,技术,医疗保健,科学等等。

更新时间:2024-05-20 02:09

如何用量化的方法诊断个股

前言

我们常用量化投资的方式预测未来可以交易的个股,从而获取最大收益。但能不能反其道而行之,通过量化的形式诊断个股:判断是否可以买入?仓位如何设置最合理?

对于资深投资者来说,可以根据历史交易经验,结合该股的特性及大盘环境,判断在这类情况下股票的胜率及收益如何,以此作为买入决策。

但有个更简单、快速的方法,可以借助量化快速找出股票在大盘环境下历史的收益率和胜率情况,作为买入决策。

本次分享将介绍如何用量化的方式诊断个股,并依据量化分析结果作为买入决策和制定交易计划。

正文

[/wiki/static/upload/9d/9d17fabf-6f78-4e80-8da0-5

更新时间:2024-05-17 08:24

大跌行情下的量化策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 11:00

指定交易日内收盘价的斜率计算

文档代码有更新, 请移步:

https://bigquant.com/wiki/doc/5oyh5a6a5lqk5pit5pel5yaf5ps255uy5lu355qe5pac546h6k6h566x-3vmHty3GJJ

问题

laosha+如何计算前5-10个交易日收盘价的斜率。

思路

![{w:100}](/wiki/api/attachments.redirec

更新时间:2024-05-16 06:37

HYF一个可视化stockranker 模板策略

https://bigquant.com/experimentshare/6508a3b7858b4d098a358a880b18b332

训练结果展示: \n {w:100}{w:100}

更新时间:2024-05-16 06:36

可视化TALIB指标策略

新版策略请转向

https://bigquant.com/wiki/doc/talib-OZIAb2sLoM

策略案例

https://bigquant.com/experimentshare/5d43988b1b9a443284807f6614b8eb5b

\

更新时间:2024-05-16 06:35

【历史文档】策略示例-基于StockRanker的AI量化选股策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 01:59

请问DELAY 这个函数是什么意思

OPEN/DELAY(CLOSE,1)-1   这个函数中DELAY 是什么意思

\

更新时间:2023-12-14 07:32

策略有办法实时运行吗?

如下午14点50,判断是否涨停,没涨停就卖出 这种

更新时间:2023-11-27 05:56

问题反馈:国证2000指数数据不全

如图:

{w:100}

更新时间:2023-10-09 07:02

请问怎么计算分红率同时并入每天的数据当中去呢

如题,想引入分红率作为因子,但不知道该从哪里下手

更新时间:2023-10-09 06:41

请问交易软件上看到的行业K线数据如何获取

比如991344游戏行业,指数里面没看到有这个

更新时间:2023-10-09 06:34

十年期国债收益率数据


一个小小的需求:可以提供十年期国债收益率和社融数据吗?

\

更新时间:2023-10-09 03:26

持仓比例问题

{w:100}上图为买入twap1 卖出为twap8时候的持仓比率

{w:100}下图为买入open 卖出close时候的持仓比率 请问这是哪里的问题?

![{w:100}](/wiki/api/attachments.redirect?id=9b51f825-7d67-4158-a063

更新时间:2023-10-09 03:08

财务数据的使用

更新时间:2023-10-09 02:41

筹码策略研究-20230830

{{membership}}

https://bigquant.com/codeshare/7fd0ea69-d032-46f3-8b0e-7e0fda50f573

\

更新时间:2023-08-30 03:29

基于阻力支撑相对强度(RSRS)的市场择交易-20230815

{{membership}}

https://bigquant.com/codeshare/1ed3fa07-c733-47fd-8fbc-4e441ed37672

\

更新时间:2023-08-30 03:27

重要通知


\

更新时间:2023-06-03 05:45

5-13直播代码-潮汐因子投研

{{membership}}

https://bigquant.com/experimentshare/1ac7989b1e63421ba3850e5394e6c36a

\

更新时间:2023-05-31 07:19

三种构建大盘风控指标的方法

作者:woshisilvo

导语

在以往的分享中,很多朋友们问到如何设置大盘风控?在之前的分享中,我们讲过可以采用指数的涨跌幅以及Macd指标作为大盘风控的思路,通过特征列表 构造指数特征macd表达式,再通过指数特征抽取来进行风控的设置。

bm_0=where(ta_macd_dif(close,2,4,4)-ta_macd_dea(close,2,4,4)<0,1,0)

本次我们对该思路进行改造,从以下三个方面进行优化:

  • 构造指数的MAAMT指标作为指数风控的指标
  • 用指数的成交量(3.5日ma线死叉)作为风控依据
  • LSTM神经网络模型

更新时间:2023-05-06 07:33

机器学习在量化领域中的应用优势

随着交易数据量越来越大,金融领域的各种应用已经验证了使用人工智能可以更好地进行投资或业务决策,也越来越多人相信人工智能技术在金融领域的应用前景。人工智能提供了一种适用于从个人数据到业务流程的高效数据分析工具。 与此同时,越来越多金融机构开始使用机器学习方法,以期在市场竞争中赢得优势。量化投资机构逐渐抛弃传统的分析方法,转而使用机器学习算法预测市场走势和选择投资组合。 与传统投资方式相比,量化投资方式具有更高效率及准确性。量化投资是一种基于计算机系统而生成的投资策略选择方法,可以对数学模型进行监理,在实现交易理念活动过程中构建更为完善规范的量化投资评价体系。在对模型进行监理的基础上,再对历史数据

更新时间:2023-05-04 23:27

如何推八字

如何推八字

更新时间:2023-02-07 10:55

分页第1页第2页第3页第4页
{link}