为什么基于树的机器学习方法,如 XGBoost 和随机森林在表格数据上优于深度学习?本文给出了这种现象背后的原因,他们选取了 45 个开放数据集,并定义了一个新基准,对基于树的模型和深度模型进行比较,总结出三点原因来解释这种现象。
引自:机器之心
深度学习在图像、语言甚至音频等领域取得了巨大的进步。然而,在处理表格数据上,深度学习却表现一般。由于表格数据具有特征不均匀、样本量小、极值较大等特点,因此很难找到相应的不变量。
基于树的模型不可微,不能与深度学习模块联合训练,因此创建特定于表格的深度学习架构是一个非常活跃的研究领域。许多研究都声
更新时间:2022-08-02 03:24
本周全A选股(沪深300行业市值中性)朴素贝叶斯表现最好本周沪深300涨跌幅为-5.85%。本周3个模型跑赢基准,超额收益最高的模型是朴素贝叶斯,该模型本周获得绝对收益-5.40%,超额收益0.45%。 最近一月超额收益最高的模型是随机森林,该模型最近一月获得绝对收益,超额收益1.13%。2018年以来超额收益最高的模型是随机森林,该模型2018年以来获得绝对收益-14.16%,超额收益4.73%。2018年以来RankIC均值最高的模型是Stacking,该模型RankIC均值为0.119。 本周全A选股(中证500行业市值中性)XGBoost表现最好本周中证500涨跌幅为-6
更新时间:2022-07-29 07:12
更新时间:2022-04-21 06:21
更新时间:2022-03-31 18:20
所有条件不变的情况下,回测买入股票有问题,回测到1月20日,输出日志内1月21日买入的股票跟回测到21日,回测中实际买入的股票不符,什么原因?
更新时间:2022-01-22 04:31
决策树及Boosting思想是理解Xgboost算法不可或缺的部分Xgboost算法是Boosting(集成)算法的高效体现。集成学习方法是将多个学习模型组合,使得组成的模型具有更强的泛化能力。
另外,Xgboost的基模型一般选择均为CART分类回归树,其逻辑清晰且理论优美,适合用于金融领域。报告将首先介绍CART分类回归树与boosting思想,再衍生至高效实现其思想的Xgboost。
将全市场收益率按大小顺序等分为三类,本文利用Xgboost算法对股票收益率所属类别作出预测与传统多因子模型类似,算法试图拟合多个因子与股票收益率之间的规律关系,不同的是
更新时间:2021-11-20 09:38
本文旨在普及机器学习的使用,对于文章涉及到的模型策略不具有实盘参考意义。
XGBoost 是 “Extreme Gradient Boosting”的简称,其中“Gradient Boosting”来源于附录1.Friedman的这篇论文。本文基于 gradient boosted tree ,中文可以叫梯度提升决策树,下面简称GBDT,同时也有简称GBRT,GBM。针对gradient boosted tree的细节也可以参考附录2.这篇网页。
XGBoost 主要是用来解决有监督学习问题,此类问题利用包含多个特征的训练
更新时间:2021-10-21 08:34
本代码完整版一共包括三部分:数据、算法、回测交易。 由于该策略与机构有一些合作,我们只放出了数据和算法。希望大家能够理解!
https://bigquant.com/experimentshare/5a93201876eb401e998867e0b5106175
\
更新时间:2021-07-30 08:09