116-质量投资策略

策略介绍

该策略是一个质量投资策略,即基于公司质量指标选择股票

在这里,我们将质量因子(score)定义为盈利能力(Profitability) + 成长性(Growth) + 安全性(Safety)

  • 盈利能力指标由资产毛利率GPOA,ROE,ROA,资产流动资金比CFOA,毛利率G

由bqbcl5zr创建,最终由Unknown更新于

AI量化交易是什么意思

**概念定义:**一种使用高级数学模型、统计分析和计算机算法进行交易决策的方法。

**应用范围:**一般包括股票、期货、外汇和衍生品等金融市场;

**主要原理:**依赖于金融市场中的价格、交易量、经济指标等大量历史和实时数据,用以识别市场趋势、估值、波动性等关键因素;使用

由bqw9z8tc创建,最终由bqadm更新于

开发传统趋势策略

导语

本文以双均线策略为例,如何开发一个传统的趋势跟踪策略。

在BigQuant策略平台上,除了开发AI策略,还可以开发传统策略,比如趋势跟踪、套利、事件驱动策略、多因子选股策略。本文以双均线策略为例,帮助大家更好地理解[BigQuant回测机制](/doc/bigquant-N3sndR

由Unknown创建,最终由bqadm更新于

机器学习之“强化学习”

最基本的强化学习建立在马尔可夫决策过程(Markov Decision Process,MDP)上,当模型的动态特征已知时可以按照动态规划(Dynamic Programming,DP)进行迭代求解。

1988 年,时间差分算法(Temporal-Difference Method,TD)被应用于

由ftkj2018创建,最终由small_q更新于

数据类型之列表

导语

本文介绍了Python中非常重要的数据类型——列表。


Python内嵌数据的类型:

有序:

List(列表),是有序集合,没有固定大小,可以通过对偏移量以及其他方法修改列表大小。列表的基本形式如:[1,2,3,4]

Tuple(元组),是有序集合,

由clearyf创建,最终由bqadm更新于

10分钟学会pyarrow

Apache Arrow介绍

Apache arrow是高性能的,用于内存计算的,列式数据存储格式。PyArrow是apache arrow的python库,PyArrow与NumPy、pandas和内置的Python对象有很好的集成。它们是基于Arrow的C++实现。

Hello

由think创建,最终由small_q更新于

峰度和偏度

导语

本文介绍了峰度和偏度以及如何运用这两个统计指标进行数据的正态性检验。

[https://bigquant.com/codeshare/00af3416-796d-43b9-9726-489d436a98ee](https://bigquant.com/codeshare/00a

由clearyf创建,最终由Unknown更新于

AVL树的概念及Python实现

AVL树的基本概念

AVL树是一种自平衡二叉搜索树。在这种树中,任何节点的两个子树的高度差最多为1。这种高度平衡确保了在最坏情况下,树的操作(如查找、插入、删除)都能在O(log n)的时间复杂度内完成,其中n是树中节点的数量。

关键属性:

  1. 高度平衡

由bqw9z8tc创建,最终由small_q更新于

【最优化】凸函数的驻点是全局最优点

定理

首先我们来看定理:设f(x): Rn→R 为可微凸函数,如果 x∗∈R是驻点,那么 x∗ 为f的最优点(global.opt)。

换句话说就是,如果函数是凸函数,那么该函数的驻点就是全局最优点。

下面来证明一下:

*要判断一个点是全局最小值的话

由small_q创建,最终由small_q更新于

MATLAB 笔记:蒙特卡洛方法

蒙特卡洛(Monte Carlo)方法是一种基于随机数的计算方法。这一方法源于美国在二战期间研制原子弹的“曼哈顿计划”,该计划的主持人冯诺依曼用摩纳哥驰名世界的赌城Monte Carlo来命名这个方法,因此称之为Monte Carlo方法。

Monty Hall Problem,也称为三门问题,是

由polll创建,最终由polll更新于

SciPy库的核心概念及主要功能

SciPy是基于Python的一个开源库,用于数学、科学和工程计算。它建立在NumPy的基础上,提供了许多高级的数值计算功能,从而使得Python成为一个强大的科学计算环境。SciPy是科学计算中最重要的库之一,广泛应用于学术和工程领域,包括金融领域的量化分析和模型开发。

基本概念

由bqw9z8tc创建,最终由small_q更新于

过拟合详解

导语

本文为Mehmet Süzen撰写文章的译文,稍有删改。文章清晰地阐释和区分过度拟合及过度拟合等概念,对于本领域学习者正确理解专业术语多有帮助。正如作者在原文末所指出的:对待简单的概念,我们也应抱着积极求学的态度,了解其成立的基础。

前言

大多数从业者对”过拟合“这一概念存在

由ypyu创建,最终由bqadm更新于

函数调用与定义

导语

本文介绍Python编程中非常重要的函数调用与定义的相关知识点。

\


本文由BigQuant宽客学院推出,版权归BigQuant所有,转载请注明出处。

\

由clearyf创建,最终由bqadm更新于

AVL树和红黑树的Python代码实现

AVL树

AVL树是一种自平衡二叉搜索树。在这种树中,任何节点的两个子树的高度差被严格控制在1以内。这确保了树的平衡,从而保证了搜索、插入和删除操作的高效性。AVL树是由Georgy Adelson-Velsky和Evgenii Landis在1962年发明的,因此得名(Adelson-Ve

由bqw9z8tc创建,最终由small_q更新于

Tensorflow第一讲 - 介绍及基本用法

TensorFlow

Google 2015年11月开源的人工智能系统 数据流(flow)图技术来进行数值计算

节点:数据 / 值运算 边:多维数据(tensors - 张量,python numpy ndarray)的流动

步骤及元素

构建图:将计算流程表示成图 执行图:通过S

由ypyu创建,最终由bqadm更新于

那些免费的机器学习交易资源

机器学习是当今几乎每个行业的需求。医药、交通、医疗保健、广告和金融技术等行业非常依赖机器学习。谈到金融技术领域,算法交易实践对于机器学习算法非常有效。有各种资源可用于学习机器学习交易,通过本文可以让您可以访问

由hardsum创建,最终由small_q更新于

基于LSTM的股票价格预测模型

导语

本文介绍了LSTM的相关内容和在股票价格预测上的应用。


LSTM的股票价格预测

LSTM(Long Short Term Memory)是一种 特殊的RNN类型,同其他的RNNs相比可以更加方便地学习长期依赖关系,因此有很多人试图将其应用于 **时间序列的

由clearyf创建,最终由bqadm更新于

Numpy库

导语

本文介绍数值分析的一大利器——Numpy

附件:Numpy介绍

[https://bigquant.com/experimentshare/3132bdddfa574e27b49a4bb1bea299ad](https://bigquant.com/experimentshare/

由clearyf创建,最终由small_q更新于

交叉验证防止过拟合

交叉验证是一种在统计学和机器学习领域广泛使用的技术,主要用于评估模型的泛化能力,即模型对未见数据的预测能力。这种技术在金融领域的量化交易策略开发中尤为重要,因为金融市场的数据通常具有高度的不确定性和变化性。交叉验证通过在不同的数据子集上训练和测试模型来帮助识别和防止过拟合,过拟合是指模型对训练数据过

由bqw9z8tc创建,最终由small_q更新于

DQN个股择时策略研究与改进

导语

之前在社区分享过一个初版的强化学习策略,之后我们在那个基础上做了一些调整和优化,本文主要是关于新版策略的一些介绍和结果分析。

与初版策略的区别

新版策略与初版的主要区别在于state的定义不同。初版用当天的OHLCV和7个常用因子数据作为一条state。新版设置了一个win

由clearyf创建,最终由bqadm更新于

分页:第1页第2页第3页第4页第5页第26页
{link}