MATLAB 笔记:蒙特卡洛方法
蒙特卡洛(Monte Carlo)方法是一种基于随机数的计算方法。这一方法源于美国在二战期间研制原子弹的“曼哈顿计划”,该计划的主持人冯诺依曼用摩纳哥驰名世界的赌城Monte Carlo来命名这个方法,因此称之为Monte Carlo方法。
Monty Hall Problem,也称为三门问题,是
由polll创建,最终由polll更新于
蒙特卡洛(Monte Carlo)方法是一种基于随机数的计算方法。这一方法源于美国在二战期间研制原子弹的“曼哈顿计划”,该计划的主持人冯诺依曼用摩纳哥驰名世界的赌城Monte Carlo来命名这个方法,因此称之为Monte Carlo方法。
Monty Hall Problem,也称为三门问题,是
由polll创建,最终由polll更新于
作者,石川,北京量信投资管理有限公司创始合伙人,清华大学学士、硕士,麻省理工学院博士。
一本大数据时代的实证资产定价方法前沿,请查收。
大数据时代,与资产预期收益率相关的协变量数量与日俱增。资产定价已然步入了协变量的高维数时代。在这个背景下,传统计量经济学方法在利用诸多协变量以及它
由small_q创建,最终由small_q更新于
当我们开始学习编程的时候,第一件事往往是学习打印"Hello World"。就好比编程入门有Hello World,机器学习入门有MNIST。
MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片
它也包含每一张图片对应的标签,告诉我们这个是数字几。比如,上面这四张图片
由ypyu创建,最终由bqadm更新于
XGBoost(eXtreme Gradient Boosting)是一个高效的机器学习库,也是一种基于梯度提升决策树(Gradient Boosting Decision Tree)的集成学习算法,专为提升树算法的性能和速度而设计。它实现了梯度提升框架,并支持回归、分类及排序的问题。XGBoost
由bqw9z8tc创建,最终由bqadm更新于
短期涨跌的预测相比长期更容易,但覆盖交易成本后再获利的难度更大。所以在高频交易场景,机器学习更适合有限状态下的订单执行。而对于长期的预测,机器学习的训练目标可以不是评估在给定状态下的每股总利润或买入行为的回报,而是监控在该状态下买入与在所有可能状态下买入的相对盈利能力。
由small_q创建,最终由bqadm更新于
MDPs和动态规划 研究科学家Diana Borsa解释了如何用动态规划解决MDPs,以提取准确的预测和良好的控制政策。
[/wiki/static/upload/81/813ce39b-112f-4d7b-b034-1b584731213d.mp4](/wiki/static/upload/81
由Unknown创建,最终由Unknown更新于
第7讲:函数近似 研究科学家Hado van Hasselt解释了如何将深度学习与强化学习相结合,以实现“深度强化学习”。
[https://www.youtube.com/watch?v=ook46h2Jfb4](https://www.youtube.com/watch?v=ook46h2Jf
由Unknown创建,最终由Unknown更新于
相关性经常用来度量两个变量的相关关系,本文将对相关系数做详细讨论。
诺贝尔经济学奖得主马科维茨曾说过“资产配置多元化是投资的唯一免费午餐”。投资中有句谚语,不要把鸡蛋放在一个篮子,实际上讲的就是选择相关性不高的资产进行配置。资产之间的相关性用什么指标
由clearyf创建,最终由clearyf更新于
本文介绍数值分析的一大利器——Numpy
附件:Numpy介绍
[https://bigquant.com/experimentshare/3132bdddfa574e27b49a4bb1bea299ad](https://bigquant.com/experimentshare/
由clearyf创建,最终由small_q更新于
TensorFlow是一个由Google开发的开源机器学习库,用于数据流编程。它允许开发者构建和训练复杂的深度学习模型,以解决各种问题。自从2015年发布以来,TensorFlow已经成为深度学习领域最受欢迎的框架之一,广泛应用于计算机视觉、自然语言处理、声音识别、时间序列分析等领域。
实现机器学习的功能。遗传编程是一种自动化的机器学习方法,通过模拟达尔文的自然选择理论来解决问题。它属于遗传算法的一种,通过选择、交叉(杂交)、变异等操作对程序(个体
由bqw9z8tc创建,最终由small_q更新于
之前在社区分享过一个初版的强化学习策略,之后我们在那个基础上做了一些调整和优化,本文主要是关于新版策略的一些介绍和结果分析。
新版策略与初版的主要区别在于state的定义不同。初版用当天的OHLCV和7个常用因子数据作为一条state。新版设置了一个win
由clearyf创建,最终由bqadm更新于
10分钟了解GBDT+LR模型的来龙去脉
Gradient Boosting Decision Tree + Logistic Regression 建模过程中,解释变量质量的好坏 / 特征的好坏决定了模型的效果的上限,数据的噪音过多也会让模型检验的结果严重失真,而GBDT+LR
由ypyu创建,最终由bqadm更新于
第11讲:多步骤和间歇政策 研究科学家Hado van Hasselt讨论了多步和关闭策略算法,包括各种减少方差的技术。
[https://www.youtube.com/watch?v=u84MFu1nG4g](https://www.youtube.com/watch?v=u84MFu1nG4
由Unknown创建,最终由Unknown更新于
第12讲:深度强化学习#1 研究工程师Matteo Hessel讨论了深度RL的实际考虑和算法,包括如何使用自区分(即Jax)实现这些。
[https://www.youtube.com/watch?v=cVzvNZOBaJ4](https://www.youtube.com/watch?v=cV
由Unknown创建,最终由Unknown更新于
本文是基于StackAbuse的一篇讲解Seaborn的文章 上编写。 附示例及实现代码,可直接前往文末 **一键克隆代
由clearyf创建,最终由Unknown更新于
Scikit-learn是一个开源的Python库,专为机器学习提供简单和有效的工具。它建立在NumPy、SciPy和Matplotlib库之上,提供了一套广泛的监督和非监督学习算法通过一个一致的接口。Scikit-learn广泛应用于学术和商业环境,特别是在数据挖掘、数据分析和机器学习领域。
由bqw9z8tc创建,最终由small_q更新于
第8讲:规划与模型 研究工程师Matteo Hessel解释了如何学习和使用模型,包括像Dyna和蒙特卡罗树搜索(MCTS)这样的算法。
[https://www.youtube.com/watch?v=FKl8kM4finE](https://www.youtube.com/watch?v=FK
由Unknown创建,最终由Unknown更新于
\
机器学习的研究领域包括有监督学习(Supervised Learning),无监督学习(Unsupervised Learning),半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)等诸
由kuailian创建,最终由small_q更新于
直观的,图1是一维凸函数的示例。一维情况下,不严格的说,凸函数是弦
由small_q创建,最终由bqadm更新于
本文来自于MSCI研究,原文标题为《情绪因素在不同地区的表现如何?》
关键词:MSCI | 全球投资 | 因子投资
作者:Howard Zhang
资料来源:MSCI 因子实验室。
情绪因素试图衡量不同群体对公司的看法。可以通过多种方式并从各种数据源中衡量情绪。许多情绪
由Unknown创建,最终由Unknown更新于
本文介绍了协整的初步内容。
协整是什么这个问题回答起来不是那么直观,因此我们先看下图,了解一下具有协整性的两只股票其价格走势有什么规律。
![](/wiki/api/attachments.redirect?id=9fab01c4-405
由xuxiaoyin创建,最终由xuxiaoyin更新于
本文14323字,阅读约28分钟
导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。
1.人工智能量化投资概述
2.人工智能技术简介
3.机器学习在
由Unknown创建,最终由bqadm更新于
由Unknown创建,最终由small_q更新于
由ypyu创建,最终由ypyu更新于