风险平价组合理论与实践

导语

本文介绍了风险平价组合的理论与实践;后续文章将对risk parity组合进行更深入探讨以及引入预期收益后的资产配置实战策略。

前言

  • 资产配置是个很广泛的话题,在投资中是一个非常重要的话题
  • 从使用场景分类上来看,资产配置可以是宏观的资产配置,比如货币类、债券类、权益类

由clearyf创建,最终由qxiao更新于

Beta对冲

导语

本文介绍了因子模型、对冲以及Beta的相关内容,并针对如何进行市场风险对冲给出了具体的案例。

因子模型

因子模型是通过其他若干项资产回报的线性组合来解释一项资产回报的一种方式,因子模型的一般形式是:

![{w:100}{w:100}](/wiki/api/attachme

由clearyf创建,最终由qxiao更新于

数据预处理方法(标准化、规范化、二值化等)

预处理数据

数据预处理在众多深度学习算法中都起着重要作用,实际上,对数据进行适当处理后,很多算法能够发挥最佳效果。然而面对各种各样的数据,很多时候我们不知道怎么样才能针对性进行处理。本文介绍了Python下的机器学习工具scikit-learn。其中,“sklearn.preprocessi

由ypyu创建,最终由qxiao更新于

ATR指标

什么是ATR

ATR又称 Average true range平均真实波动范围,简称ATR指标,是由J.Welles Wilder 发明的,ATR指标主要是用来衡量市场波动的强烈度,即为了显示市场变化率的指标。

首先提出的,这一指标主要用来衡量价格的波动。因此,这一技术指标并不能直接反映价

由small_q创建,最终由qxiao更新于

布林带指标用法和技巧

布林带是一种技术指标,用于以更好的方式分析市场并帮助我们对资产价格做出更好的假设,即资产是否超买或超卖。布林带之于交易就像莎士比亚之于文学,如果你想在交易世界中留下印记,这非常重要而且很难避免。

布林

由qxiao创建,最终由qxiao更新于

量化投资

导语

1989年发表的论文《The Fundamental Law of Active Management》及其随后的相关论文揭示了寻求主动投资的alpha收益的数量化关系,这为主动组合投资管理带来一套令人信服的分析框架,这个数量化关系很好揭示了数量化技术(量化投资)可以如何或

由ypyu创建,最终由qxiao更新于

因子(特征)工程是什么

导语

近年来,国内量化投资迎来了发展的黄金期,但涉及机器学习的量化投资还比较少。机器学习领域的大神Andrew Ng(吴恩达)老师曾经说过机器学习很大程度上就是特征工程,因此本文主要介绍下特征工程在量化投资领域的应用。


特征工程是什么?

有这么一句话在业界广泛流传: *

由clearyf创建,最终由small_q更新于

获取港股日线行情数据

根据模版构建可视化线性策略

1.首先选取需要的线性策略组成部分:

2.修改特征

在m2输入特征内修改

由bq5bun29创建,最终由small_q更新于

Pandas查看和选择

新版数据导入部分使用dai库

导语

本节主要讲解Pandas库中 DataFrame 的数据查看与选择


Pandas 是基于 Numpy 构建的,让以 Numpy 为中心的应用变得更加简单。平台获取的数据主要是以 Pandas 中DataFrame 的形式。除此之外,

由qxiao创建,最终由qxiao更新于

10分钟学会Pandas

SELECT date, open, high, low, close

FROM bar1d_CN_STOCK_A

WHERE instrument = '000005.SZA'

AND date BETWEEN '2017-01-06' AND '2017-02-10'

ORDER BY

由xiaoshao创建,最终由qxiao更新于

知乎量化交易及其子话题高赞精华帖整理

学习量化也有一段时间了,BigQuant平台与知乎可以说是我的主要学习战场了,一直在跟着BigQuant学院那个《AI量化训练营》学习,再从从知乎中寻找优秀文章进行补充,最终在平台进行实践,我觉的这样效率很高,我整理了知乎量化交易话题,及程序化交易、宽客、多因子模型等子话题中的精华帖,筛选了高赞的文

由qxiao创建,最终由qxiao更新于

量化交易是什么?  快速入门版

什么是量化交易?

度娘官方版 — 理论这么说

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策 。(注:*

由iquant创建,最终由qxiao更新于

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervise

由iquant创建,最终由qxiao更新于

AI量化交易指标

AI量化指标的选择和排序取决于特定的投资策略、市场条件和数据可用性。

以下是30个常见的AI量化指标,按照一般在量化分析中的重要性排序:

  1. [收益率](https://bigquant.com/wiki/doc/5bm05yyw5ps255uk546h6k6h566x5yws5byp5y

由bqw9z8tc创建,最终由qxiao更新于

机器学习量化投资实战指南

本文14323字,阅读约28分钟

导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。

文章概览:

1.人工智能量化投资概述

2.人工智能技术简介

3.机器学习在

由bqmesu0a创建,最终由qxiao更新于

基于随机森林模型的智能选股策略

导语

机器学习已经成为量化策略设计中的一大利器,了解各种机器学习算法的原理、特点、优劣,对于量化建模有着极大的帮助。因此,本系列【专题研究】介绍几种在资本市场中非常流行的机器学习算法及其在选股方面的相应应用,希望能对大家有所帮助。


随机森林是当前使用最广泛的机器学习集成

由clearyf创建,最终由bqah4jb9更新于

相对强弱指数RSI公式及买入卖出用法

(含相对强弱指数公式、使用技巧、Python代码、回测平台)

相对强弱指数(Relative Strength Index,RSI)是一种动量指标,用于分析股票的价格走势,以确定过度买入或过度卖出的条件。它是通过比较最近期间内的平均收益和平均损失来计算的。

[BigQuant](http

由bqw9z8tc创建,最终由bqw9z8tc更新于

布林带指标公式及使用技巧(含Python代码)

布林带指标(Bollinger Bands,缩写BOLL)是一种流行的技术分析工具,由约翰·布林格(John Bollinger)在1980年代发明。

布林带主要用于评估股票或其他金融资产的价格波动性和市场趋势。一般由三条线组成:一个中间带(移动平均线)和两个外带(标准差带)。

[Big

由bqw9z8tc创建,最终由bqw9z8tc更新于

PE市盈率公式及使用技巧含Python

市盈率(Price-to-Earnings Ratio,简称 P/E Ratio)是一种评估公司股价相对于其每股盈利(EPS)的指标。它是投资者用来衡量股票投资价值和评估公司股价是否被高估或低估的常用工具。

BigQuant的[金融市场数据因子平台

由bqw9z8tc创建,最终由small_q更新于

ROE净资产收益率公式及如何使用(含Python)

净资产收益率(Return on Equity,简称 ROE)是一种衡量公司盈利能力的财务指标,用来评估公司管理层使用股东资本的效率。

ROE可以表示公司能够从每单位股东权益中创造多少利润。

BigQuant的[金融市场数据因子平台](https

由bqw9z8tc创建,最终由bqw9z8tc更新于

分页:第1页第2页第3页第4页第5页第14页
{link}