《因子选股系列研究之四十六》:DFQ2018绩效归因与基金投资分析工具-东方证券-20181025
绩效归因分析主要是将投资组合的业绩与基准业绩相比较,并将超越基准部分的收益分解成若干影响投资决策的因素。投资组合的绩效归因分析主要有两大类:基于收益率的绩效归因和基于组合持仓的绩效归
基于收益率的绩效归因主要有T-M 模型、H-M 模型、C-L模型、TM-FF3 、HM-FF3和CL-FF3模型。
由Unknown创建,最终由Unknown更新于
绩效归因分析主要是将投资组合的业绩与基准业绩相比较,并将超越基准部分的收益分解成若干影响投资决策的因素。投资组合的绩效归因分析主要有两大类:基于收益率的绩效归因和基于组合持仓的绩效归
基于收益率的绩效归因主要有T-M 模型、H-M 模型、C-L模型、TM-FF3 、HM-FF3和CL-FF3模型。
由Unknown创建,最终由Unknown更新于
从2013年开始,券商股在沪深300成分股中的总权重就始终处在8%以上,最高的时候甚至能达到12%,对于指数有着不低的影响。此外,券商指数与其他行业指数走势的同步率较低,说明券商行业有其独特之处。因此,在构建沪深300增强组合的时候,若能对于券商、银行等权重占比较大的独特行业进行独立的分块建模,理论
由Unknown创建,最终由Unknown更新于
在某个时点上的股票的横截面市值基本上都可以被公司的财务指标和市场因素所解释,也就是说市值解释模型依据了市场上股票的情况,给出了每个公司当期投资者认为的内生市场价值,而解释模型的残差部分,也就是当前市值和内生市值的差,代表了不可解释的部分。残差值越大,代表公司当前的市值向上偏离内生市值越多,那么公司的
由Unknown创建,最终由Unknown更新于
因子选股研究通常采用月频调仓模式,但是Alpha因子的效用并非在未来一个月均匀分布,而是呈现逐步衰减的形态,也就是说我们从月初获得的alpha要比月末获得的alpha高,持仓一个月不动的调仓方式在当月后半段资金利用效率较低,有必要在alpha衰退之前调仓
子的alpha衰减速度可以用其IC的半衰期
由Unknown创建,最终由Unknown更新于
研究结论
流行差的股票有横截面溢价,但非流行性本身不能被直接观测,其一方面表示交易者若想立即成交必须对股价做出的让步,另一方面是单位主动订单对股价的冲击
我们参考学术界的研究和投资界的习惯,选择了相对买卖价差(Percent Quoted Spread)、实际交易价差(Perce
由Unknown创建,最终由Unknown更新于
机器学习容易给人“黑箱模型”和“过拟合”的印象,但事实上一些机器学习算法的逻辑和结果都非常直白,而且算法自身带有一套避免过拟合的参数估计机制。众多的实践研究说明,机器学习方法的预测能力大部分情况下都强于线性模型,很值得在量化投资中测试使用。本报告主要讲述机器学习的基本原理和用其来做量化选股的实证结果
由Unknown创建,最终由Unknown更新于
相同比例的主动订单对股价向上的冲击和向下的冲击可能不太一样,向上冲击较大的股票表现出上涨容易、下跌困难的特征,向下冲击较大的股票表现出下跌容易、上涨困难的特征。我们基于股票5分钟的资金流和行情数据提出了价格冲击偏差的概念,用于捕捉这一特征
价格冲击偏差在横截面上有很好的选股能力,价格冲击偏差较小的
由Unknown创建,最终由Unknown更新于
随着技术的进步和竞争的加剧,越来越多的投资已经开始关注日内高频数据,高频数据一般指分笔数据(Tick)、快照数据(Quote)以及衍生出来的分钟数据、资金流量数据等,本文涉及主要是日内5分钟行情数据
本文主要想考察股票的日内价格行为特征和股票未来收益率之间关系,度量股票日内价格行为特征最简单的方法
由Unknown创建,最终由Unknown更新于
传统多因子Alpha模型大多是在全市场范围内对股票一视同仁地进行打分评价,忽视了个股之间的基本面情况差异和选股因子在不同风格股票池里的适用性,能够捕捉不同股票之间差异性的动态情景模型(Dynamic Contextual Alpha Model)应运而生, 并且在海外市场获得了优异的业绩
本文借鉴
由Unknown创建,最终由Unknown更新于
在本篇中,我们借鉴统计套利的思想,提出了价差偏离度的概念,试图捕捉股票相对其同类型股票的高估低估程度。价差偏离度因子本质上是一个相对意义上的反转因子,价差偏离度低,近期跑输其同类股票,股票相对处于低位,有向上回复的动力,有正的预期超额收益,价差偏离度越高,股票处于相对高位,后期有回调的压力
价差偏
由Unknown创建,最终由Unknown更新于
国内量化发展已有十余年,各家机构投资者的Alpha因子库也随之扩大,这时会面临两个问题:alpha信息源的重叠与因子间相关性处理。本报告将提供这两个问题的解决处理方法,
我们基于Fama-MacBeth回归设计了一套Alpha因子筛选流程,剔除信息重复的因子。在实证中,我们把11
由Unknown创建,最终由Unknown更新于
前期的专题报告《投机、交易行为与股票收益(上)》中我们提出利用特质波动率、特异度、价格时滞、市值调整换手四个交易行为类指标可变相度量个股被投机的程度,进一步分析我们发现特异度、和市值调整换手两个指标几乎可以包含四个交易行为类指标的所有有效信
通过加总特异度、市值调整换手的信息得到一个的反应个股被投
由Unknown创建,最终由Unknown更新于
多因子选股模型的整个投资流程包括alpha模型的构建,风险模型的构建,交易成本模型的构建,投资组合优化过程以及组合业绩的归因分析。从国内市场上已公开的量化模型看,采取的大多是打分法选股或者行业、市值分层构建组合,这种组合构建方式缺乏对风险和alpha的精确控制,最终组合可能偏离预定的投资目标
多因
由Unknown创建,最终由Unknown更新于