投资策略

投资策略是投资者为实现其投资目标而采取的一系列决策和行动。从金融角度看,有效的投资策略不仅能降低风险,还能最大化回报。它涉及到资产配置,即如何在不同的投资工具(如股票、债券、商品、现金等)之间分配资金;时机选择,即决定何时进入或退出市场;以及证券选择,即挑选具有增长潜力的具体投资标的。成功的投资策略需要综合考虑市场环境、投资者风险承受能力和投资期限等因素,并根据这些因素进行动态调整。通过多元化投资、风险管理以及持续的市场研究和分析,投资者可以制定并执行适合自己的投资策略,从而在复杂多变的金融市场中实现理财目标。

SAR抛物线模型研究-20230818

{{membership}}

SAR抛物线模型研究

https://bigquant.com/codeshare/25fee71f-dcef-4fe4-a8a1-75bf511d9466

SAR抛物线模型回测

[ https://bigquant.com/codeshare/79b84aec-5eeb-4218-8c38-67e06f477216]( https://bigquant.com/codeshare/79b84ae

更新时间:2023-08-30 03:28

投研小组分享区

更新时间:2023-08-16 09:10

找人修改策略提高收益

这个

更新时间:2023-07-25 03:41

反包策略新思路-7月收益14%

sss

更新时间:2023-07-06 07:55

BigQuant 最佳实践

  • BigQuant使用案例
  • 最佳使用方式

\

更新时间:2023-06-29 06:56

6-19 直播代码 筹码计算

{{membership}}

https://bigquant.com/codeshare/55f9bca0-7139-4c13-8e61-5277d1aa2a95

\

更新时间:2023-06-26 08:17

同城创业培训教你做

  1. weibo.com/ttarticle/p/show?id=2309404915397563646401 weibo.com/ttarticle/p/show?id=2309404915397702058547 [weibo.com/ttarticle/p/show?id=2309404915397844664430](http

更新时间:2023-06-26 05:35

230608 孤雁出群

{{membership}}

https://bigquant.com/codeshare/38085c4a-2332-4ceb-ba0e-eed448c3c6e5

\

更新时间:2023-06-15 10:43

申万宏源技术指标测试大全之十四— Commodity Selection Index

指标介绍

股票选择指标(Commodity Selection Index):简称:CSI

所需数据和参数:CSI(high,low,close,length )

指标伪码:

MYMARGIN:=1000;

MYCOMMISION:=25;

K:=300/(SQRT(MYMARGIN)(150+MYCOMMISION))100;

MTR:=EMA(MAX(MAX(HIGH-LOW,ABS(HIGH-REF(CLOSE,1))),ABS(REF(CLOSE,1)-LOW)),LENGTH);

HD :=HIGH-REF(HIGH,1);

*LD :=REF(L

更新时间:2023-06-13 06:53

华西证券机器学习择时系列之三:LSTM模型市场择时策略 2021/09/09

摘要

量化择时交易策略

机器学习量化交易策略的制定,是通过从海量历史数据中,利用计算机强大的处理能力,挖掘并分析出那些能够为投资者带来收益的各种大概率可行的投资方式来实现的。通过数学模型对这些策略进行分析并加以验证,以期望让投资者获得更高更稳定的收益,或更合理地规避风险。

长短期记忆模型具有明显优势

长短期记忆模型通过记忆单元有效地学习长期依赖关系,在金融市场预测中具有明显优势长短期记忆网络是人工神经网络的一种,具有负责计算时间序列中各个观测值之间依赖性的能力,同时具有快速适应趋势中急剧变化的固有能力。所以,长短期记忆模型可以在波动的时间序列中很好地工作。在处理股

更新时间:2023-06-13 06:53

基于现金流与折现率的板块轮动策略 天风证券 20181018

摘要

A股行业轮动现象明显

A股市场年度领涨的行业呈现显著的切换效应,行业是A股市场最大的风险收益源之一,把握行业的轮动效应能够为投资策略贡献极高的收益。

行业涨跌呈现明显的集聚效应

行业的涨跌呈现明显的板块集聚性,因此行业的轮动可以进行分层,区分为板块的轮动效应与板块内行业轮动效应。依据行业收益率进行分层,依据不同的逻辑进行择时。 不同板块对现金流与折现率的敏感度(beta)差异大

根据two-beta模型对DDM模型拆解得到的结论发现。

金融现金流beta显著高于平均水平,而折现率beta几乎为0;周期板块则呈现较高的现金流beta,同时折现率be

更新时间:2023-06-13 06:53

上市公司核心竞争力投资策略 国泰君安_20181128

摘要

四个维度认知企业核心竞争力:学术研究对于核心竞争力内涵的理解可概括为技术竞争力、产品竞争力、内控竞争力和持续发展性4个维度。技术竞争力是决定企业核心竞争力的形成的基础因素,产品竞争力是企业核心竞争力的直接体现,内控竞争力强化企业在技术和产品方面的竞争优势,持续发展性揭示企业保有并提升现有竞争力的能力。

多指标合成竞争力评价因子:选取四个维度下可量化的指标合成竞争力评价因子。经行业和风格调整后的因子与传统风格因子相关性较低,保持了因子的独立性。预测能力方面,因子月度 IC 为 1.59%,ICIR 为 1.40,具有一定的预测能力,同时在 10 年~13 年以及 17 年至今的

更新时间:2023-06-13 06:53

分析师超预期因子选股策略-中信建投-20200402

摘要

本文主要介绍超预期幅度因子的定义、分析师超预期股票收益特征分析和分析师超预期选股策略的构建。首先我们介绍精确到单季度的净利润超预期幅度ESP因子算法,然后我们对超预期股票的收益特征进行分析,发现EP_TTM和过去一个月收益率两个风格因子可以很好地解释超预期股票的收益来源。最后每月底根据EP_TTM和过去一个月收益率两个风格因子限定样本池,然后选取净利润超预期幅度最大的20只股票构建超预期20组合。组合基本上每年稳定战胜中证500指数,可以作为中证500增强的补充组合。

分析师超预期幅度因子定义

分析师超预期幅度ESP因子可以定义如下:ESP =(单季度实际净利润

更新时间:2023-06-13 06:53

量化策略专题研究:行业趋势配置模型研究-中信证券-20200325

摘要

目录CONTENTS

1.趋势配置模型的基本原理

2.中信一级行业指数历史表现及动量效应

3.传统截面动量模型在行业配置组合上的应用及改进方向

4.“时序动量+截面动量+止损机制”构建行业趋势配置组合

5.主要结论

正文

/wiki/static/upload/ca/ca5796d5-887d-4986-b0b2-a968e35b08b9.pdf

\

更新时间:2023-06-13 06:53

基于条件随机场的周频择时策略 广发证券_20180403

摘要

报告摘要:条件随机场模型及股市择时思路自1988年,西蒙斯成立了大奖章基金并在多次股灾中取得稳定的收益后,纯技术量化型的投资策略开始受到投资者的广泛关注,而机器学习正是这种技术量化型策略的中坚力量。目前使用较为成熟的模型之一是隐马尔可夫模型HMM,其与条件随机场是一对“生成判别对”。相比起HMM,条件随机场具有更加灵活等优点。事实上,条件随机场(Conditional Random Field,CRF)是描述给定一组输入随机变量条件下另一组输出变量的条件概率分布的模型。基于条件随机场,我们可以建立观测指标值和走势状态及走势状态与走势状态之间复杂的函数依赖关系,从而,当给定新的观测

更新时间:2023-06-13 06:53

生成对抗网络:用于金融交易策略、和组合优化

Generative Adversarial Networks for Financial Trading Strategies Fine-tuning and Combination

作者:Adriano Koshiyama, et al.

出处:Quantitative Finance, 2020-09-01

摘要

系统交易策略是分配资产以优化特定绩效的算法程序。为了在竞争激烈的环境中获得优势,分析师需要适当地微调策略,或者发掘如何通过创造新的alpha以组合弱信号。已经有多种方法对微调和组合这两个方面进行了广泛研究,但是新兴技术,例如生成对抗网络,也会对这些方面产生

更新时间:2023-06-13 06:53

上下影线,蜡烛好还是威廉好?-东吴证券-20200619

摘要

前言

本篇报告为东吴金工“技术分析拥抱选股因子”系列研究第二篇,延续了“将技术分析的方法应用于构建选股因子”的研究理念,从经典的蜡烛图上下影线入手,逐步探索了上下影线中蕴藏的选股信号。

蜡烛上下影线选股因子

根据蜡烛图上、下影线的定义,构造选股因子。回测结果显示,基于蜡烛图上影线构建的因子具有不错的选股能力,而蜡烛图下影线因子的选股能力较差。其中,蜡烛图上影线的标准差因子“蜡烛上_std”效果最好,在全样本内年化ICIR为-1.78,5分组多空对冲的信息比率为1.64,月度胜率为68.38%。

威廉指标对蜡烛图的修正

除了蜡烛图上下影线,威廉指标

更新时间:2023-06-13 06:53

BigQuant复现研报


\

更新时间:2023-06-13 06:50

230607 花隐林间

{{membership}}

https://bigquant.com/codeshare/0527a8c8-9944-4c74-b845-2068dce50bd1

\

更新时间:2023-06-11 13:36

Bigquant数据导航

预计算因子:直接可拿来用

链接:https://bigquant.com/wiki/doc/yinzi-b9voNK2tnq

数据源检索:具有比较丰富的数据,但需join或者其他处理才可以作为因子使用

链接:https://bigquant.com/wiki/doc/-tOnkTw9FhH#h-财报数据

\

更新时间:2023-06-06 03:07

重要通知


\

更新时间:2023-06-03 05:45

可转债双低策略-可转债日频

https://bigquant.com/experimentshare/d845df2c36424de989e719fe3af29805

\

更新时间:2023-06-01 06:21

小市值策略-股票日频

https://bigquant.com/experimentshare/4f0628d6e9814924a0b0dbf375356d06

\

更新时间:2023-06-01 06:11

5-9 直播代码 潮汐因子

{{membership}}

https://bigquant.com/experimentshare/ba243c6cd508478bacc881069da6dfea

\

更新时间:2023-05-31 07:22

5.15 筹码分布计算

{{membership}}

https://bigquant.com/experimentshare/5edc72bb7b8d48e88612c2922b9469bb

\

更新时间:2023-05-31 07:19

分页第1页第2页第3页第4页第5页第16页
{link}