更新时间:2024-06-06 10:40
高频交易在美国证券市场中的角色
如果把正在正常交易、买卖力量均衡的市场比喻成一个平静的水面,此时,某个基本面交易员下了一个数量较大的订单,这好比往水中投入了一块石头。那么,不论是订单自身的价格推动力,还是其他投资者做出的反应,都会使市场产生一系列波动,一如水面泛起的层层涟漪。而高频交易则藏匿于其中,于市场的起伏之中寻找获利的机会。
在美国,上市和交易业务是完全分离的
所有的上市证券均可以在任何一家交易所交易。对高频交易商而言,这种碎片化的交易模式提供了很大的获利机会。试想,同一个证券很有可能因为市场流动性或是参与者结构的差异,甚至只是信息传递存在时滞,在不同
更新时间:2024-05-23 06:11
freestyle996+如何运用股票标注的方法对1-3日内上涨的股票进行标注?
https://www.bilibili.com/video/BV1uP4y1R7kh/?spm_id_from=333.999.0.0
[https://bigquant.com/experimentshare/0a4bb333c1bb4f4e91d7701a3538f6f4](https://bigquant.co
更新时间:2024-05-21 09:10
更新时间:2024-05-21 06:30
更新时间:2024-05-20 10:41
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors
https://bigquant.com/wiki/doc/dai-PLSbc1SbZX
[ht
更新时间:2024-05-20 06:21
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,相关策略请参考以下链接:
https://bigquant.com/wiki/doc/124-exuI9VGX1a
https://bigquant.com/wiki/doc/5z66yer5ym5z2h57q562w55wl-F6yoWKprOq
本策略主要分享如何以指定
更新时间:2024-05-17 10:21
本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:
https://bigquant.com/wiki/doc/5z65lqo5y2p5pw055qe6ywn5a55lqk5pit-6x1P1362eJ
[https://bigquant.com/experimentshare/6b05d7bd134e420387acfa25c37b283f](https://bigquant.co
更新时间:2024-05-17 09:23
更新时间:2024-05-17 06:27
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 03:49
作者:Adriano Koshiyama, et al.
出处:Quantitative Finance, 2020-09-01
系统交易策略是分配资产以优化特定绩效的算法程序。为了在竞争激烈的环境中获得优势,分析师需要适当地微调策略,或者发掘如何通过创造新的alpha以组合弱信号。已经有多种方法对微调和组合这两个方面进行了广泛研究,但是新兴技术,例如生成对抗网络,也会对这些方面产生
更新时间:2023-06-13 06:53
更新时间:2023-06-01 06:18
更新时间:2023-05-23 02:30
更新时间:2023-05-23 02:30
更新时间:2023-05-17 06:36
\
更新时间:2023-04-12 10:45
\
更新时间:2023-03-20 05:38
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
Renaissance Technologies文艺复兴科技公司交易策略揭秘记录!该短片中详细介绍了文艺复兴科技公司多年来如何开发各种交易策略,从早期的均值回归到利用内核方法等等。
https://www.bilibili.com/video/BV1ae4y1f7Em
\
更新时间:2022-10-10 12:50
更新时间:2022-10-09 11:05
深度了解易方达量化投资团队,大咖解读量化投资趋势与方法
https://www.bilibili.com/video/BV1te4y187ig
\
更新时间:2022-09-16 16:56
文献来源:Demiguel V, Gil-Bazo J, Nogales F J, et al. Can Machine Learning Help to Select Portfolios of Mutual Funds?[J]. Social Science Electronic Publishing, 2021.
推荐原因:众所周知,事先确定未来表现优异的共同基金是一项困难的任务。本文基于大量投资者容易获得的基金特征数据,利用机器学习方法训练提升其预测能力。研究发现,利用1980年至2018年期间美国股票型基金的数据,基于机器学习方法构建的基金组合,经风险调整
更新时间:2022-08-31 09:22
文献来源:van Loon R J M. Long-Term Investing and the Frequency of Investment Decisions[J]. The Journal of Portfolio Management, 2021.
推荐原因:本文分析了投资决策频率对长期投资结果的影响。我们推导出,长期投资回报是技能、交易成本和波动率的非线性函数。实证研究表明,当存在交易成本时,最佳投资决策的频率存在着一个上限,且美国股票和政府债券市场中的最佳频率有较为显著的差异。此外,当投资频率偏低或者偏高时,投资策略对所需的技能水平都有较高的要求。
更新时间:2022-08-31 08:54