更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
Renaissance Technologies文艺复兴科技公司交易策略揭秘记录!该短片中详细介绍了文艺复兴科技公司多年来如何开发各种交易策略,从早期的均值回归到利用内核方法等等。
https://www.bilibili.com/video/BV1ae4y1f7Em
\
更新时间:2022-10-10 12:50
深度了解易方达量化投资团队,大咖解读量化投资趋势与方法
https://www.bilibili.com/video/BV1te4y187ig
\
更新时间:2022-09-16 16:56
文献来源:Demiguel V, Gil-Bazo J, Nogales F J, et al. Can Machine Learning Help to Select Portfolios of Mutual Funds?[J]. Social Science Electronic Publishing, 2021.
推荐原因:众所周知,事先确定未来表现优异的共同基金是一项困难的任务。本文基于大量投资者容易获得的基金特征数据,利用机器学习方法训练提升其预测能力。研究发现,利用1980年至2018年期间美国股票型基金的数据,基于机器学习方法构建的基金组合,经风险调整
更新时间:2022-08-31 09:22
文献来源:van Loon R J M. Long-Term Investing and the Frequency of Investment Decisions[J]. The Journal of Portfolio Management, 2021.
推荐原因:本文分析了投资决策频率对长期投资结果的影响。我们推导出,长期投资回报是技能、交易成本和波动率的非线性函数。实证研究表明,当存在交易成本时,最佳投资决策的频率存在着一个上限,且美国股票和政府债券市场中的最佳频率有较为显著的差异。此外,当投资频率偏低或者偏高时,投资策略对所需的技能水平都有较高的要求。
更新时间:2022-08-31 08:54
文献来源:Blitz, David. Hanauer, Matthias. Settling the Size Matter: The Journal of Portfolio Management Quantitative Special Issue 2021, 47 (2) 99-112.
推荐原因:规模溢价自被发现已有近四十年,然而规模因子的alpha一直很微弱,但是当控制质量因子(quality-versus-junk)暴露时,因子似乎又恢复了活力。本文发现,在美国市场,规模因子对质量因子回归后呈现出非常显著的alpha,然而超额收益主要由质量因子的空头端驱动,
更新时间:2022-08-31 08:46
更新时间:2022-08-31 08:06
量化策略回溯测试得到的“纸面收益”与实际交易“账面收益”最大差别在于交易成本控制,特别是对资金量大、换手率高的产品。在成交价格上加减一个固定比例的冲击成本的传统做法并不可行,它无法反应不同时点、不同股票、不同资金量造成冲击的差异。本报告基于A股主动买卖单数据,提供了一个可行的股票冲击成本模型,辅助投资者控制资金冲击,提升账面收益。
我们构建了幂指数模型来解释股票的冲击成本。一般来说股票的流通市值、波动率、市场的活跃程度都会影响冲击成的大小。通过对历史数据做拟合我们得到了冲击成本函数的参数在不同月份的数值,并可据此计算股票的冲击成本与主动交易金额的关系。
我们将冲击
更新时间:2022-08-30 09:49
更新时间:2022-08-29 04:43
\
更新时间:2022-08-25 02:16
\
更新时间:2022-08-25 02:16
涉及国内主要品种的不同的频率的回测与交易
\
更新时间:2022-07-31 01:58
更新时间:2022-05-22 01:17
主题:The Impact of AI to Global Asset Managers: The Responses and Adoptions
演讲人:关子敬 先生 Kevin Kwan彭博亚太区量化及数据科学专家
**完整视频观看地址:<https://webcast.roadshowchina.cn/cmeet/NlZBZVhZRGZ6Q1NSRjdrbmJqQjZUQT09
更新时间:2022-04-18 02:08
更新时间:2022-02-21 09:13
\
更新时间:2022-02-08 03:49
来源:The Journal of Portfolio Management December 8,2021
标题:Trending Fast and Slow
作者:Eddie Cheng, Nazar Kostyuchyk, Wai Lee, Pai Liu, Chenfei Ma
时序动量策略的基础是假设过去的收益对未来的收益有一定程度的预测能力。通常,一个策略是通过在上涨阶段建立多头头寸,在下跌阶段建立空头头寸来实现的。学术文献文献表明,最近过去的资产收益与未来收益正相关。时序动量策略的有效性在多个时期、许多市场和许多资产中得到了证明。
更新时间:2021-12-14 02:28
更新时间:2021-11-30 02:54
作者:Harry Nicholls编译:caoxiyang
你有没有想过如何使你的交易策略自动化并增加交易利润?在本文中,我们将介绍算法交易的基本知识,好处和风险。准备好开始自动交易吧!
很多技术分析都涉及观察信号指标,然后根据信号进行交易。正如我在之前的文章“一个让优秀交易者高于其他交易者的行为”中所讨论的那样,你应该在你的交易日志中记录下你所有的交易,当你获得更多的经验时,你应
更新时间:2021-08-24 05:46
本代码完整版一共包括三部分:数据、算法、回测交易。 由于该策略与机构有一些合作,我们只放出了数据和算法。希望大家能够理解!
https://bigquant.com/experimentshare/5a93201876eb401e998867e0b5106175
\
更新时间:2021-07-30 08:09
更新时间:2021-07-30 07:26