风险控制

在金融领域,风险控制被视为核心业务战略之一,旨在最大限度地降低因市场变动、欺诈行为、管理失误或其他不可预见事件导致的资产损失。这一过程首先通过全面的风险识别和评估来实施,然后运用先进的统计模型,合理地定量分析不同类型的金融风险,这些类型的风险涵盖了市场风险、操作风险、信用风险和流动性风险等。通过连续的风险监控和报告制度,金融机构能够及时调整其风险管理策略,以应对瞬息万变的市场环境和潜在的威胁。因此,有效的风险控制不仅保护了公司的资产和收益,还增强了投资者信心,确保了金融体系的稳健运行。

如何使Ic与收益强相关

问题

假设同样的label下,IC从0.04提高到0.06但是策略收益却没有明显提升,怎么看待这个现象,怎么处理能让Ic与收益强相关呢?

视频

[https://www.bilibili.com/video/BV1JV4y1J7cU?share_source=copy_web&vd_source=2e7dc1240ea373ea6eba1134af8dd086](https://www.bilibili.com/video/BV1JV4y1J7cU?share_source=copy_web&vd_source=2e7dc1240ea373ea6eba1134af8dd086

更新时间:2024-06-07 10:55

56th Meetup

小白学习

小白如何学习?出现错误提示后,有没有好的解决方案,有没有专门对接的群?

机器学习/深度学习

  1. 机器学习在量化中,怎样在过程中查看策略、理解机器学习的逻辑和修正?
  2. 目前股票策略中使用最广泛的机器学习和深度学习的模型有哪些?
  3. 机器学习或深度学习策略回撤过高,该结合什么风险控制或择时策略比较好?
  4. 如果使用深度学习或机器学习自动挖掘因子?
  5. 使用深度学习模型时,总觉得泛化性能很差。加上一些提升泛化能力的手段, 比如正则、dropout等,好像没什么用。请问有没有什么较好的方法?

\

策略调优

  1. 如何判断策略失效以及失效后的处理

更新时间:2024-06-07 10:55

风控和择时:情绪周期如何用于追涨策略

本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

\

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


\

问题

风控和择时:情绪周期如何用于追涨策略

视频

[https://www.bilibili.com/video/BV1ui4y1m7Nx?spm%5Fid%5Ffrom=333.999.0.0](https://www.bilibili

更新时间:2024-06-07 10:55

有哪些合理的大盘风控方案?

问题

有哪些合理的大盘风控方案?

视频

https://www.bilibili.com/video/BV1TF41167ph?share_source=copy_web

策略源码

[https://bigquant.com/experimentshare/07791ba8fc354d4e9793ce963a735263](https://bigquant.com/experimentshare/07791ba8fc354d4e9

更新时间:2024-06-07 10:55

如何设置同板块的股票仓位比例限制?

问题

最近发现已有持仓里有时会出现同一行业板块股票过多的情况,比如持仓里60%都是医药股票。请问下怎么能做下同板块股票数量限制,比如设置同一行业板块的股票不超过总仓位的20%这样。

视频

https://www.bilibili.com/video/BV1Ug411M7iz?p=2&share_source=copy_web

策略源码

板块最大仓位20%

更新时间:2024-06-07 10:55

如何挑选连续涨停股票

{{membership}}

https://bigquant.com/codeshare/9a29b13f-6ebe-46a4-a131-c356aed54a36

\

更新时间:2024-06-07 10:55

一字涨停策略简单实现

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-23 07:20

设定以策略的最大可回撤空间来控制开仓的仓位

策略案例


https://bigquant.com/experimentshare/a3dac910ca0442aeb170f73a2fe7168c

\

更新时间:2024-05-21 07:51

早盘买卖

策略案例


https://bigquant.com/experimentshare/3f0d164525984abca02f3e0f58155a00

\

更新时间:2024-05-20 06:15

用线性随机梯度下降-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 02:15

【风控-仓位管理】究竟是满仓搜哈一夜暴富?还是猥琐发育更聪明?

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 02:08

DQN个股择时策略研究

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

导语

本文主要分享一个基于Deep Q Network的对于个股的择时策略

算法简介

DQN与Q-Learning

本文主要使用的是Deep Q Network。DQN是强化学习的一种方法,结合了Q-learning和深度学习神经网络。

Q-learning是用一张表来记录各个状态下的各个行为的q值,它能记录的状态

更新时间:2024-05-20 00:40

指定低于开盘价2%买入的双均线策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,相关策略请参考以下链接:

https://bigquant.com/wiki/doc/124-exuI9VGX1a

https://bigquant.com/wiki/doc/5z66yer5ym5z2h57q562w55wl-F6yoWKprOq


本策略主要分享如何以指定

更新时间:2024-05-17 10:21

StockRanker选股+随机森林大盘风控

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 07:25

用随机森林-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 06:42

lstm+cnn+A股去ST+大盘风控

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 03:48

深度学习在期货高频上的应用示例

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 02:54

Barra风险结构管理模型

导语

本文挑选了著名的风险结构模型进行介绍,具体的细节并没有深入展开,旨在抛砖引玉,了解Barra对于风险结构模型的思维方式和理念。


多因子模型

相似的资产会有相似的回报,这是多因子模型的基本假设。由于某些特定的原因(因子),资产会表现的十分类似,例如价量变化、行业、规模或者利率变化。多因子模型就是为了发掘这些因子,并且确定收益率随因子变化的敏感程度。通常来说,多因子模型包括了宏观因子模型、基本面因子模型和统计因子模型。这几种模型在分析不同的大类资产风险收益的时候也有不同的效果。

实现原理

单个资产的多因子模型可以表示成:

![{w:100}

更新时间:2024-03-03 10:49

反包策略新思路-7月收益14%

sss

更新时间:2023-07-06 07:55

分析师超预期因子选股策略-中信建投-20200402

摘要

本文主要介绍超预期幅度因子的定义、分析师超预期股票收益特征分析和分析师超预期选股策略的构建。首先我们介绍精确到单季度的净利润超预期幅度ESP因子算法,然后我们对超预期股票的收益特征进行分析,发现EP_TTM和过去一个月收益率两个风格因子可以很好地解释超预期股票的收益来源。最后每月底根据EP_TTM和过去一个月收益率两个风格因子限定样本池,然后选取净利润超预期幅度最大的20只股票构建超预期20组合。组合基本上每年稳定战胜中证500指数,可以作为中证500增强的补充组合。

分析师超预期幅度因子定义

分析师超预期幅度ESP因子可以定义如下:ESP =(单季度实际净利润

更新时间:2023-06-13 06:53

上下影线,蜡烛好还是威廉好?-东吴证券-20200619

摘要

前言

本篇报告为东吴金工“技术分析拥抱选股因子”系列研究第二篇,延续了“将技术分析的方法应用于构建选股因子”的研究理念,从经典的蜡烛图上下影线入手,逐步探索了上下影线中蕴藏的选股信号。

蜡烛上下影线选股因子

根据蜡烛图上、下影线的定义,构造选股因子。回测结果显示,基于蜡烛图上影线构建的因子具有不错的选股能力,而蜡烛图下影线因子的选股能力较差。其中,蜡烛图上影线的标准差因子“蜡烛上_std”效果最好,在全样本内年化ICIR为-1.78,5分组多空对冲的信息比率为1.64,月度胜率为68.38%。

威廉指标对蜡烛图的修正

除了蜡烛图上下影线,威廉指标

更新时间:2023-06-13 06:53

R-Breaker日内策略-期货分钟

https://bigquant.com/experimentshare/3e5c4533c9fa4174a16f8784bccfb69b

\

更新时间:2023-05-23 02:30

菲阿里四价策略 -期货分钟

https://bigquant.com/experimentshare/14142aa9e6dc4695bb326e88942d7661

\

更新时间:2023-05-17 06:36

双均线策略-股票分钟

https://bigquant.com/experimentshare/612fccdedb274977ba74636700ecc9b8

\

更新时间:2023-05-17 06:36

量化择时


\

更新时间:2023-05-04 15:10

分页第1页第2页第3页
{link}