机器学习

机器学习在金融领域的应用日益广泛,为金融业务的智能化提供了强大动力。它运用算法和模型,自动从海量数据中学习和提取有用信息,无需人工进行复杂编程。在金融风控方面,机器学习技术可帮助银行、保险公司等机构更准确地识别欺诈行为,降低信贷风险。在投资策略上,通过对历史数据的深度学习,机器能预测市场走势,为投资者提供更精准的建议。同时,机器学习还能优化客户服务,例如通过聊天机器人提供24小时在线咨询,或根据客户行为数据提供个性化金融产品推荐。总的来说,机器学习不仅提升了金融业的效率和智能化水平,也在重塑我们的金融生态。

AI Quantitative Trading Knowledge/AI量化交易常識

AI量化交易重要常识

  1. 数据质量与完整性:高质量、准确、全面的数据是AI量化交易成功的关键。
  2. 模型过拟合:避免过度拟合历史数据,这可能导致未来性能下降。
  3. 市场效率:理解市场效率和其对交易策略性能的影响。
  4. 算法复杂性:更复杂的算法并不总是更好,简单有效往往更为重要。
  5. 风险管理:制定严格的风险管理策略以保护资本。
  6. 交易成本

更新时间:2025-07-24 05:26

AI量化策略的初步理解

导语

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

以StockRanker为例

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量Y未来的取值,并找到了影响变量Y取值的K个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数 ![](/w

更新时间:2025-07-24 03:26

选股因子系列研究(六十四):基于直观逻辑和机器学习的高频数据低频化应用-海通证券-20200424

在系列前期报告中,我们从不同角度探寻了分钟成交数据、TICK盘口委托数据以及逐笔数据中所包含的选股能力。研究结果表明,高频数据中包含着较为显著的选股能力。即使在剔除了常规低频因子的影响后,高频因子依旧具有显著的选股能力。考虑到系列前期报告在研究构建高频因子时,大多仅使用某一类高频数据进行因子构建,并未将相关数据搭配使用。本文从逻辑以及机器学习两个角度出发,尝试将不同类别的高频数据混合使用并构建低频选股因子。

买入意愿与主动买入的结合。总结前期研究成果可知,委托挂单数据中包含了投资者还未释放的交易意愿,而逐笔成交数据中包含了投资者已进行的交易行为。两者的结合能够更加全面地刻画投资者的交易意愿。

更新时间:2025-07-24 01:30

用CNN算法实现A股股票选股

导语

在阅读了 深度学习的简要介绍后,本文将介绍深度学习CNN模型及其在量化投资领域中的应用。

深度学习在量化领域应用

机器学习作为人工智能的核心,其传统算法在解决很多问题上都表现出了高效性。随着近些年数据处理技术上的进步和计算能力的提升,深度学习得以在很多问题上也大放光彩,成为近一段时间互联网、金融等领域的大热门。

在量化投资领域,机器学习尤其是由统计学延伸的各种算法一直以来都被尝试应用在选股、择时等策略的开发上,随着深度学习在其他领域上的突破,其在自动化交易甚至投资策略的自开发自学习方面的应用成为了大家探索的焦点。

为什么要用深度学习?

深度学习目前最成功的场景应用

更新时间:2025-07-23 08:56

股票主动投资组合管理思想和框架

这是关于股票主动投资组合管理的第一篇教程。在开始介绍正式内容之前,我先简要简要说一下《Alpha系列》的初衷。

近年来,随着国内大数据和人工智能的迅速崛起,量化交易领域也有了长足的发展。 从原来的指标驱动型程序化交易,演化到现在的以机器学习、人工智能为代表的新型量化交易。同时,量化交易的门槛与过去相比下降了许多。 不仅是因为这些年数据科学的发展带动了python及其生态的成熟和推广,更由于类似tushare、vnpy、zipline等开源项目以及像quantopian、n2nquant等量化平台的出现, 使得以前做量化先造轮子到现在量化从业者可以专注于策略的研发,使得更多的人能够进入到这个领

更新时间:2025-07-23 08:18

策略模版/Demos

BigQuant策略模板库旨在帮助用户快速开始并优化他们的量化投资策略。无论您是初学者还是经验丰富的投资者,我们的策略模板都能提供从简单到复杂的多种投资策略选择。这些模板涵盖了基础策略、中级策略和高级策略。

  • 基础策略模板:适用于刚开始接触量化投资的用户,例如简单的移动平均线交易策略。
  • 中级策略模板:适用于具有一定经验的用户,包括多因子模型和基于事件的交易策略。
  • 高级策略模板:针对高级用户设计,使用复杂的机器学习算法和高频交易技术。

模版使用

  • 克隆模版策略
  • 进入 [AIStudio 3.0](https://bigquant.com/aistud

更新时间:2025-07-01 07:55

使用M.tune写一个超参优化

前言

M.tune可调节的参数仅限于模块中的参数, 具体用法可参考**尝试用M.tune写一个滚动训练.**

使用方法

我们创建一个机器学习算法策略, 将可视化画布转化为代码形式:

接下来将画布的代码进行打包并命名为search, 你也可以命名为其他名字:

![](/wiki/api/attachments.redi

更新时间:2025-07-01 07:55

AI量化交易是什么意思

**概念定义:**一种使用高级数学模型、统计分析和计算机算法进行交易决策的方法。

**应用范围:**一般包括股票、期货、外汇和衍生品等金融市场;

**主要原理:**依赖于金融市场中的价格、交易量、经济指标等大量历史和实时数据,用以识别市场趋势、估值、波动性等关键因素;使用复杂的数学(包括统计学、概率论、机器学)模型来分析数据和预测市场行为,并通过计算机算法预设的规则和模型自动执行交易。(文末含量化核心资源

核心工具

数据分析

历史数据分析:通过分析历史价格、成交量等数据来预测市场趋势。

实时市场数据:收集实时交易数据,对市场

更新时间:2025-07-01 07:47

适合初学者的 10 大机器学习算法

英国数学家、计算机科学家、逻辑学家和密码分析家艾伦·图灵推测机器:

“这就像一个学生从他的老师那里学到了很多东西,但在他自己的工作中增加了很多东西。发生这种情况时,我觉得人们有义务将机器视为显示智能。”

举一个机器学习影响的例子,Man group 的 AHL Dimension 计划是一个价值 51 亿美元的对冲基金,部分由 AI 管理。成立后,到 2015 年,其机器学习算法为基金贡献了一半以上的利润,尽管其管理的资产要少得多。

[ ![交易中的机器学习{w:100}{w:100}{w:100}](https://d1rwhvwstyk9gu.cloudfront.net/2

更新时间:2025-07-01 07:35

Scikit-learn是什么?快速入门教程

Scikit-learn是一个开源的Python库,专为机器学习提供简单和有效的工具。它建立在NumPy、SciPy和Matplotlib库之上,提供了一套广泛的监督和非监督学习算法通过一个一致的接口。Scikit-learn广泛应用于学术和商业环境,特别是在数据挖掘、数据分析和机器学习领域。

Scikit-learn概念

基本概念

Scikit-learn的设计哲学基于以下几点:

  • **简洁的

更新时间:2025-07-01 07:35

65本机器学习书单 2020年

{w:100}{w:100}

前言

斯普林格已经向公众发布了数百本关于广泛主题的免费图书。这份名单共有408本书,涵盖了广泛的科学和技术主题。为了节省您的时间,我创建了一个与数据和机器学习领域相关的所有书籍(共65本)的列表。

在这些书中,你会发现那些处理数学方面的领域(代数,统计,和更多) ,随着更高级的书籍深度学习和其他高级主题。您还可以在各种编程语言(如 Python、 R 和 MATLAB 等)中找到一些好书。

书单

更新时间:2025-07-01 07:35

贝叶斯优化算法原理及代码

贝叶斯优化是一种基于贝叶斯定理的优化方法,广泛应用于机器学习、金融建模和其他需要高效搜索最优参数的领域。它通过构建目标函数的概率模型,并在此基础上逐步更新和优化参数选择,从而实现高效的全局优化。

算法原理

  1. 目标函数

    1. 这是需要优化的函数,通常是复杂且成本高昂的黑盒函数。在金融领域,这可能是投资组合的预期回报率或风险调整后的收益。
  2. 先验分布

    1. 对目标函数的初始猜测。
    2. 高斯过程贝叶斯优化通常使用高斯过程(Gaussian Process, GP)作为先验,它是一种用来描述数据

更新时间:2025-07-01 07:35

贝叶斯公式定理及理解

贝叶斯定理是机器学习领域中的一种重要算法。它的基本思想是根据已知数据和先验概率,通过贝叶斯公式计算出后验概率,从而进行分类或预测。朴素贝叶斯(Naive Bayes)是贝叶斯算法中的一种经典方法,也是为数不多的基于概率论的分类算法。它在拼写检查、语言翻译、生物医药、疾病诊断、邮件过滤、文本分类等诸多方面都有很广泛的应用。贝叶斯定理也是统计学和概率论中非常重要的一个定理,它提供了一种在已知某些其他概率的情况下,计算某个事件概率的方法。这个定理在金融领域的风险评估、市场趋势预测等方面有广泛应用。

贝叶斯公式

贝叶斯定理可以表达为:P(AB)= P(B∣*A

更新时间:2025-07-01 07:35

监督式机器学习算法的应用:择时

导语

《Machine Learning for Stock Price Forecasting》是Ali El-Shayeb撰写的机器学习系列文章 ,本文主要介绍其第二部分内容——《监督式机器学习算法的应用》,并将其思想和代码应用在中国股票市场,开发出具有择时功能的监督式机器学习算法,最后进行策略回测。对此感兴趣的小伙伴可以直接在本文文末克隆策略源代码,进行深入和扩展研究。

《监督式机器学习算法的应用》

Ali El-Shayeb通过价格和成交量相关的9个特征训练模型,特征列表和数据来源见下图。

![](/community/uploads/default/origin

更新时间:2025-07-01 07:35

第一个Python程序

导语

Python作为一门最热门的语言,现在已经成为数据分析、编程门投资、机器学习的主流语言。


Python是什么?

Python是一种计算机程序设计语言。你可能已经听说过很流行的编程语言,比如非常学的C语言,非常流行的Java语言等等,适合初级的基本的JavaScript语言。

那Python是一种什么语言?

首先,我们学一下编程语言的基础知识。用任何编程语言来开发程序,都是为了让计算机干活,比如下载一个MP3,写一个文档等等,而计算机干活的CPU只认识机器指令,所以,尽管不同的编程语言千差万别,最终都可以“翻译”成CPU可以用机器指令。而不同的编程

更新时间:2025-07-01 07:35

gplearn入门

gplearn核心概念

它是一个基于Python的库,旨在通过遗传编程(Genetic Programming, GP)实现机器学习的功能。遗传编程是一种自动化的机器学习方法,通过模拟达尔文的自然选择理论来解决问题。它属于遗传算法的一种,通过选择、交叉(杂交)、变异等操作对程序(个体)进行迭代,以产生更好的解决方案。gplearn主要用于回归和符号回归任务,可以自动生成解决特定问题的数学模型或符号表达式。它的灵感来自于 scikit-learn,可以用于自动化发现数据中的关系,创建复杂的模型或因子。在金融领域,gplearn可以用于因子挖掘,帮助发现影响股票价格

更新时间:2025-07-01 07:35

17种机器学习回归算法在金融的应用

回归是一种挖掘因变量和自变量之间关系的技术。它经常出现在机器学习中,主要用于预测建模。在本系列的最后一部分中,我们将范围扩大到涵盖其他类型的回归分析及其在金融中的用途。


线性回归

简单线性回归

简单的线性回归允许我们研究两个连续变量之间的关系——一个自变量和一个因变量。


简单线性回归方程的一般形式如下:

{w:100}其中 (β_{0}) 是截距,(β_{1}) 是斜率,(ϵ_{i}) 是误差项。在这个等

更新时间:2025-07-01 07:35

机器学习应用在市场微观结构和高频交易的思考

核心观点

短期涨跌的预测相比长期更容易,但覆盖交易成本后再获利的难度更大。所以在高频交易场景,机器学习更适合有限状态下的订单执行。而对于长期的预测,机器学习的训练目标可以不是评估在给定状态下的每股总利润或买入行为的回报,而是监控在该状态下买入与在所有可能状态下买入的相对盈利能力。

Michael Kearns在2010年的关于讨论机器学习在高频交易应用的论文中,提出了很多机器学习应用与高频交易的限制,很多思考放到现在都值得我们去学习。机器学习在高频交易中主要有两个方向,一是订单的执行优化,二是高频涨跌方向的预测。这两者本质的区别是执行优化是在一个确定性的空间寻找最优解,即交易

更新时间:2025-07-01 07:35

主动学习(Active Learning)

\

背景

机器学习的研究领域包括有监督学习(Supervised Learning)无监督学习(Unsupervised Learning),半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)等诸多内容。针对有监督学习和半监督学习,都需要一定数量的标注数据,也就是说在训练模型的时候,全部或者部分数据需要带上相应的标签才能进行模型的训练。但是在实际的业务场景或者生产环境中,工作人员获得样本的成本其实是不低的,甚至在某些时候是相对较高的,那么如何通过较少成本来获得较大价值的标注数据,进一步地提升

更新时间:2025-07-01 07:35

用随机森林预测股价走势


机器学习已经广泛地应用在对于资产市场的分析中。但是,在浩如烟海的机器学习算法中,到底哪种算法能取得更优的预测效果呢?发表在《Applied Mathematical Finance》的这篇文章利用随机森林算法对股价d天之后的涨跌方向进行了预测。发现相比于SVM、线性判别分析等模型,随机森林可以取得更优秀的预测结果:能够达到85%-95%的准确率。

摘要

为了最小化预测误差,文章将预测股价的走势看做一个二分类问题(涨or跌),使用集成机器学习建模解决。文章里利用RSI(相对强弱指数)、KD随机指标、MACD等6个常用的技术指标作为分类的特征,对随机森林模型进行训练。最后发现,模型中

更新时间:2025-07-01 07:35

深度学习简介

导语

从AlphaGo到AlphaStar,深度学习的强大逐步展现给世人。那么,什么是深度学习呢?本文将简要介绍深度学习的框架以及流程。

从单层感知器开始

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

如何使用计算机建立人脑的神经网络呢?下面介绍的感知器算法很好的模拟了人脑神经网络中的神经元。

人通过收集触觉、味觉、嗅觉、视觉与听觉来得到对外界事物的认识。计算机将人收集到的这些信息设定为输入(在下图中体现为$x_1、x_2...x_n$),通过某个函数(在下图体现为$\

更新时间:2025-07-01 07:35

什么是无监督学习(机器学习)

什么是无监督学习?

顾名思义,“无监督”学习发生在没有监督者或老师并且学习者自己学习的情况下。

例如,考虑一个第一次看到并品尝到苹果的孩子。她记录了水果的颜色、质地、味道和气味。下次她看到一个苹果时,她就知道这个苹果和之前的苹果是相似的物体,因为它们具有非常相似的特征。她知道这和橙子很不一样。但是,她仍然不知道它在人类语言中的名称是什么,即“苹果”,因为不知道这个标签。

这种不存在标签(在没有老师的情况下)但学习者仍然可以自己学习模式的学习称为无监督学习。

![img{w:100}](https://d1rwhvwstyk9gu.cloudfront.net/2021/

更新时间:2025-07-01 07:35

机器学习模型可解释的重要及必要性

导语

不管你是管理自己的资金还是客户资金,只要你在做资产管理,每一步的投资决策都意义重大,做技术分析或基本面分析的朋友很清楚地知道每一个决策的细节,但是通过机器学习、深度学习建模的朋友可能就会很苦恼,因为直接产出决策信号的模型可能是个黑盒子,很难明白为什么模型会产出某一个信号,甚至很多保守的私募基金把模型的可解释性放入了事前风控。其实,模型的可解释性是很容易做到的,难点在于研究员是否对模型有深入的思考和理解。

介绍

机器学习领域在过去十年中发生了显著的变化。从一个纯粹的学术和研究领域方向开始,我们已经看到了机器学习在各个领域都有着广泛的应用,如零售,技术,医疗保健,科学等等。

更新时间:2025-07-01 07:35

机器学习中的过拟合

来源:elitedatascience编译:caoxiyang

导语

成千上万的数据科学新手会在不知不觉中犯下一个错误,你知道是什么吗?这个错误可以一手毁掉你的机器学习模型,这并不夸张。我们现在来讨论应用机器学习中最棘手的障碍之一:过拟合(overfitting)

在本文中,我们将详细介绍过拟合、如何在模型中识别过拟合,以及如何处理过拟合。 最后你会学会如何一劳永逸地处理这个棘手的问题。你将读到下面这些内容:

  1. 过拟合的例子
  2. 信号与噪音
  3. 拟合优度
  4. 过拟合和欠拟合
  5. 如何检查过拟合
  6. 如何避免过拟合

过拟合的例子

假设我们想根据

更新时间:2025-07-01 07:35

Tensorflow第二讲 - MNIST

概要

当我们开始学习编程的时候,第一件事往往是学习打印"Hello World"。就好比编程入门有Hello World,机器学习入门有MNIST。

MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片

它也包含每一张图片对应的标签,告诉我们这个是数字几。比如,上面这四张图片的标签分别是5,0,4,1。

在此教程中,我们将训练一个机器学习模型用于预测图片里面的数字。我们的目的不是要设计一个世界一流的复杂模型 -- 尽管我们会在之后给你源代码去实现一流的预测模型 -- 而是要介绍下如何使用TensorFlow。所以,我们这里会从一个很简单的数学模型开始,它叫做Softm

更新时间:2025-07-01 07:35

分页第1页第2页第3页第11页
{link}