{{use_style}}
欢迎您来到BigQuant!
BigQuant是一个人工智能量化投资平台,平台内聚集了各类人工智能量化开发者、订阅者和学习者。
如果您是一位充满好奇心的学习者,在BigQuant您可以前往:
与知识经验丰富的讲师团队,通过线上+线下的方式,学习AI量化入门、因子构建分析、AI量化实践、实战等,纵观全局获得AI量化全貌,由浅入深进阶成为量化大神。
更新时间:2025-04-24 04:15
机器学习在股票市场上应用价值初见成效,不少机器学习的策略远远超过大盘。虽然目前平台的实盘交易功能还未对外开放,但是不少策略开发者已经在实盘跟踪自己的策略了。
1.功能背景
用户在实盘中可能会遇到实盘账户数据和模拟交易运行数据不一致的情形,比如模拟交易的交易计划里提醒今天收盘时卖出A股票1000股,但今天碰巧由于断网导致卖单失败了。于是当日清算后,模拟交易策略里没有1000股A,但是实盘账户里该股票还继续持有。 策略次日会买入新股票,但实际由于收盘卖出失败,其实没有资金买入新股票。如果不对此类问题进行调整处理的话,随着交易日逐渐增多,那么实盘和模拟交易的差异会逐渐扩大,时间长了会
更新时间:2025-04-24 04:15
今天小编为大家带来近期出版的一些关于机器学习、深度学习、数据科学方面的书籍。希望大家有所收获!
我们已经打包好了!
可在文末下载
技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。
以StockRanker为例
机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量Y未来的取值,并找到了影响变量Y取值的K个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数 :
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-04-24 03:20
\
更新时间:2025-04-24 03:19
• 点击新建对话,创建一个新对话
• 点击输入框,开始与QuantChat交流
• 您可以直接输入以下对话
。数据科学
更新时间:2025-04-21 01:59
短期涨跌的预测相比长期更容易,但覆盖交易成本后再获利的难度更大。所以在高频交易场景,机器学习更适合有限状态下的订单执行。而对于长期的预测,机器学习的训练目标可以不是评估在给定状态下的每股总利润或买入行为的回报,而是监控在该状态下买入与在所有可能状态下买入的相对盈利能力。
Michael Kearns在2010年的关于讨论机器学习在高频交易应用的论文中,提出了很多机器学习应用与高频交易的限制,很多思考放到现在都值得我们去学习。机器学习在高频交易中主要有两个方向,一是订单的执行优化,二是高频涨跌方向的预测。这两者本质的区别是执行优化是在一个确定性的空间寻找最优解,即交易
更新时间:2025-04-21 01:58
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
《Machine Learning for Stock Price Forecasting》是Ali El-Shayeb撰写的机器学习系列文章 ,本文主要介绍其第二部分内容——《监督式机器学习算法的应用》,并将其思想和代码应用在中国股票市场,开发出具有择时功能的监督式机器学习算法,最后进行策略回测。对此感兴趣的小伙伴可以直接在
更新时间:2025-04-21 01:58
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-04-21 01:58
更新时间:2025-04-21 01:53
{{membership}}
一个简单封装的机器学习滚动的策略框架~可以方便的使用机器学习滚动训练回测~ \n可以在py文件内修改实际使用的模型,把mod2.py放在目录下, 直接import mod2 from mod2 配置一下config就可以一键进行机器学习滚动训练并看到回测了\n
https://bigquant.com/codesharev3/f76dfca2-cbba-44bd-a183-bd10f26619fb
\
更新时间:2025-04-21 01:52
①投资人与券商充当的角色
②投资人与券商是否对立
这是投顾经常被问到的问题。销售机构在推荐雪球产品时,必定会讲到交易对手方是券商,一些投资人会简单理解自己在和券商做博弈。我自己在第一次接触雪球时也有这样的误解:如果雪球产品跌破敲入价格,保本保息机制就消失了,所以作为对手方的券商特别有动力想股票下跌,这样就不用支付利息了。路演里刘博士很清晰的描述了券商与投资
更新时间:2025-04-21 01:51
以下是直播实录
谢谢大家,今天非常荣幸能够参加量化投资与机器学习公众号的举办的这场量化活动。今天我分享的主题是《金融科技与量化交易的中国实践》。
首先,做一个简单的自我介绍。我从05年到09年在北大就读物理学,毕业之后去了美国,12-13年在Citadel从事美股高频交易,工作一年多后就从纽约回到中国,创立了锐天投资(以下简称:锐天)。锐天从2013年开始到现在已经走过了七个年头,也见证了中国资本市场在量化领域的发展。今天我就花一些时间跟大家做一个简单的分享,谈谈这个行业的现在过去以及未来。
首先简单介绍一下量化交易这个概念吧。其实量化交易是一个非常宽泛的概念,今天我们就挑几个大
更新时间:2025-04-21 01:51
新版本暂无深度学习可视化模块
在阅读了 深度学习的简要介绍后,本文将介绍深度学习DNN模型及其在量化投资领域中的应用。
机器学习作为人工智能的核心,其传统算法在解决很多问题上都表现出了高效性。随着近些年数据处理技术上的进步和计算能力的提升,深度学习得以在很多问题上也大放光彩,成为近一段时间互联网、金融等领域的大热门。
在量化投资领域,机器学习尤其是由统计学延伸的各种算法一直以来都被尝试应用在选股、择时等策略的开发上,随着深度学习在其他领域上的突破,其在自动化交易甚至投资策略的自开发自
更新时间:2025-03-13 02:09
若想在AIStudio3.0.0种复现这个策略, 请空降:
https://bigquant.com/wiki/doc/rpsai-lgPnmWzLkq
如何结合欧奈尔的RPS指标,开发AI量化策略?
1988年,欧奈尔将他的投资
更新时间:2025-03-13 02:08
策略源码:
{{membership}}
已经更新到了AIStudio3.0.0版本, 请转移至
https://bigquant.com/wiki/doc/xgboost-I1ZKSVykGR
https://bigquant.com/codeshare/a290e569-7680-45d7-86be-f6c81c18a1e6
\
更新时间:2025-03-13 02:08
运行环境:AIStudio 3.0
策略说明:==本代码以教学目的为主,请自行调参==
回测图:
\
{{membership}}
[https://bigquant.com/codeshare/86ef92ba-f91f-46fa-a6d3-d7b2207e741b](https://bigquant.com/codeshare/86ef92ba-f91f-46fa-a6d3-d7
更新时间:2025-03-12 06:21
\
{{membership}}
https://bigquant.com/codeshare/e7bb60a5-a6e1-4310-9e6a-e4b742fb0f13
\
更新时间:2025-03-12 06:21