机器学习

机器学习在金融领域的应用日益广泛,为金融业务的智能化提供了强大动力。它运用算法和模型,自动从海量数据中学习和提取有用信息,无需人工进行复杂编程。在金融风控方面,机器学习技术可帮助银行、保险公司等机构更准确地识别欺诈行为,降低信贷风险。在投资策略上,通过对历史数据的深度学习,机器能预测市场走势,为投资者提供更精准的建议。同时,机器学习还能优化客户服务,例如通过聊天机器人提供24小时在线咨询,或根据客户行为数据提供个性化金融产品推荐。总的来说,机器学习不仅提升了金融业的效率和智能化水平,也在重塑我们的金融生态。

机器学习:14-XGBoost

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:



\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/f753d0b8-a3b2-4781-a1a9-dbf6ffe3fe38](https://bigquant.com/codeshare/f753d0b8-a3b2-4781-a1a

更新时间:2025-03-12 06:21

机器学习:20-DNN-滚动训练

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


\

策略源码:

{{membership}}

https://bigquant.com/codeshare/e7bb60a5-a6e1-4310-9e6a-e4b742fb0f13

\

更新时间:2025-03-12 06:21

机器学习:5-岭回归

  • 运行环境:AIStudio 3.0.0
  • 机器学习:岭回归策略
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/af49fa20-ce4a-4f8f-b88c-d413035fe309](https://bigquant.com/codeshare/af49fa20-ce4a

更新时间:2025-03-12 06:21

机器学习:17-LSTM

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/56e64ce1-43c8-4317-90d4-5df0a427a966](https://bigquant.com/codeshare/56e64ce1-43c8-4317-90d4-5df0

更新时间:2025-03-12 06:21

机器学习:9-KNN

  • 运行环境:AIStudio 3.0

  • 机器学习:KNN算法

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/4fbd0eb2-8eec-4d43-b9bb-5aa4596d847a](https://bigquant.com/codeshare/4fbd0eb2-8e

更新时间:2025-03-12 06:21

机器学习:2-线性回归预测上涨概率

  • 运行环境:AIStudio 3.0.0
  • 机器学习:线性回归策略:预测上涨概率
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/3c3165db-d37e-4c8a-90f6-8af10855fb18](https://bigquant.com/codeshare/3c3

更新时间:2025-03-12 06:21

机器学习:12-随机森林

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:


{{membership}}

[https://bigquant.com/codeshare/ccd34b84-4b39-4c48-b082-3859335a6c20](https://bigquant.com/codeshare/ccd34b84-4b39-4c48-b082-

更新时间:2025-03-12 06:21

机器学习:16-CNN

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


\

策略源码:

{{membership}}

https://bigquant.com/codeshare/ccbddd56-eddd-4a7f-95e2-88e8a0432a3d

\

更新时间:2025-03-12 06:21

机器学习:6-索套回归

  • 运行环境:AIStudio 3.0.0
  • 机器学习:索套回归
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/7e2cc9bf-0dea-4201-8b94-ad465750eec8](https://bigquant.com/codeshare/7e2cc9bf-0de

更新时间:2025-03-12 06:21

机器学习:3-逻辑回归预测上涨概率

  • 运行环境:AIStudio 3.0.0
  • 机器学习:逻辑回归策略:预测上涨概率
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/b2a658f9-e445-422b-95f9-b57a50e23562](https://bigquant.com/codeshare/b2a65

更新时间:2025-03-12 06:21

机器学习:4-线性回归构建因子

  • 运行环境:AIStudio 3.0.0
  • 线性回归:构建因子+单因子策略回测
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/cd8638d7-21c0-4df4-8a29-e9f1cc227df0](https://bigquant.com/codeshare/cd8638

更新时间:2025-03-12 06:21

机器学习:11-感知机

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==

回测图:

\

策略源码:


{{membership}}

[https://bigquant.com/codeshare/d6fc0818-ae1c-4408-a0af-4cd73ffddfd6](https://bigquant.com/codeshare/d6fc0818-ae1c-4408-a0af-4c

更新时间:2025-03-12 06:21

机器学习:18-滚动训练-线性回归

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


\

策略源码:

{{membership}}

https://bigquant.com/codeshare/66c560a3-335b-407c-aa2f-7053322141f4

\

更新时间:2025-03-12 06:21

机器学习:15-DNN

  • 运行环境:AIStudio 3.0
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/fd48a0d6-918f-4001-9a84-bcea18ae174b](https://bigquant.com/codeshare/fd48a0d6-918f-4001-9a84-bc

更新时间:2025-03-12 06:21

机器学习:1-线性回归预测收益

  • 运行环境:AIStudio 3.0.0
  • 机器学习:线性回归策略:预测收益
  • 策略说明:本代码以教学目的为主,请自行调参


回测图:

\

策略源码:


[https://bigquant.com/codeshare/ead656f5-c6a0-4a6d-9226-2ed3474d2a20](https://bigquant.com/codeshare/ead656f5-c6a0-4a6d-9226-2

更新时间:2025-03-12 06:21

国信证券-机器学习法选股

/wiki/static/upload/15/154dffcf-f5b9-4149-88bc-1969ac29d893.pdf

\

更新时间:2025-02-27 07:45

浙商证券-机器学习与因子(四):遗传规划:模型、优化与应用

/wiki/static/upload/52/529a958c-f60c-4ccd-a491-238c02e013d6.pdf

/

更新时间:2025-02-27 07:44

【历史文档】策略-AI策略开发

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略示例-基于StockRanker的AI量化选股策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略示例-用随机森林回归算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略示例-StockRanker模型结果解读

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略示例-用梯度提升树回归算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

基于tick的日内接刀策略

https://bigquant.com/experimentshare/665da325d93a48c397f0fe70abdca825

\

更新时间:2025-02-27 02:34

【历史文档】策略示例-基金策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略示例-基金智能策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

分页第1页第2页第3页第4页第11页
{link}