起源于 1901 年 Pearson 的主成分分析(PCA),通过对协方差矩阵的特征值分解或 SVD 分解,通过对特征值排序选取相应的特征向量,将高维特征映射到低维上,达到降维的目的。用于数据预处理。
1998 年,降维算法PCA首次与核方法结合,先将数据集通过核函数(Kernel Function)映射到高维空间,然后在高维特征空间中做 PCA。核 PCA 有更好的降维效果。
2000 年,始于局部线性嵌入(Locally Linear Embedding)的流形学习(Manifold Learning)引领了降维算法的新浪潮。
2008 年 ,t-SNE 作为非线性降维方法,可更好地
更新时间:2025-07-01 07:35
英国数学家、计算机科学家、逻辑学家和密码分析家艾伦·图灵推测机器:
“这就像一个学生从他的老师那里学到了很多东西,但在他自己的工作中增加了很多东西。发生这种情况时,我觉得人们有义务将机器视为显示智能。”
举一个机器学习影响的例子,Man group 的 AHL Dimension 计划是一个价值 51 亿美元的对冲基金,部分由 AI 管理。成立后,到 2015 年,其机器学习算法为基金贡献了一半以上的利润,尽管其管理的资产要少得多。
[ 。
在本文中,我们将详细介绍过拟合、如何在模型中识别过拟合,以及如何处理过拟合。 最后你会学会如何一劳永逸地处理这个棘手的问题。你将读到下面这些内容:
假设我们想根据
更新时间:2025-07-01 07:35
Python作为一门最热门的语言,现在已经成为数据分析、编程门投资、机器学习的主流语言。
Python是一种计算机程序设计语言。你可能已经听说过很流行的编程语言,比如非常学的C语言,非常流行的Java语言等等,适合初级的基本的JavaScript语言。
首先,我们学一下编程语言的基础知识。用任何编程语言来开发程序,都是为了让计算机干活,比如下载一个MP3,写一个文档等等,而计算机干活的CPU只认识机器指令,所以,尽管不同的编程语言千差万别,最终都可以“翻译”成CPU可以用机器指令。而不同的编程
更新时间:2025-07-01 07:35
吴恩达(1976-,英文名:Andrew Ng),华裔美国人,是斯坦福大学计算机科学系和电子工程系副教授,人工智能实验室主任。吴恩达是人工智能和机器学习领域国际上最权威的学者之一。吴恩达也是在线教育平台Coursera的联合创始人(with Daphne Koller)。
吴恩达是在线教育平台Coursera的联合创始人,吴恩达在2008年发起了“Stanford Engineering Everywhere”(S
更新时间:2025-07-01 07:35
机器学习已经广泛地应用在对于资产市场的分析中。但是,在浩如烟海的机器学习算法中,到底哪种算法能取得更优的预测效果呢?发表在《Applied Mathematical Finance》的这篇文章利用随机森林算法对股价d天之后的涨跌方向进行了预测。发现相比于SVM、线性判别分析等模型,随机森林可以取得更优秀的预测结果:能够达到85%-95%的准确率。
为了最小化预测误差,文章将预测股价的走势看做一个二分类问题(涨or跌),使用集成机器学习建模解决。文章里利用RSI(相对强弱指数)、KD随机指标、MACD等6个常用的技术指标作为分类的特征,对随机森林模型进行训练。最后发现,模型中
更新时间:2025-07-01 07:35
不管你是管理自己的资金还是客户资金,只要你在做资产管理,每一步的投资决策都意义重大,做技术分析或基本面分析的朋友很清楚地知道每一个决策的细节,但是通过机器学习、深度学习建模的朋友可能就会很苦恼,因为直接产出决策信号的模型可能是个黑盒子,很难明白为什么模型会产出某一个信号,甚至很多保守的私募基金把模型的可解释性放入了事前风控。其实,模型的可解释性是很容易做到的,难点在于研究员是否对模型有深入的思考和理解。
机器学习领域在过去十年中发生了显著的变化。从一个纯粹的学术和研究领域方向开始,我们已经看到了机器学习在各个领域都有着广泛的应用,如零售,技术,医疗保健,科学等等。
更新时间:2025-07-01 07:35
最基本的强化学习建立在马尔可夫决策过程(Markov Decision Process,MDP)上,当模型的动态特征已知时可以按照动态规划(Dynamic Programming,DP)进行迭代求解。
1988 年,时间差分算法(Temporal-Difference Method,TD)被应用于价值函数的迭代计算,它与类似的蒙特卡洛算法(Monte Carlo Method,MC)一样并不需要预先知道动态特征。本质上都被看作是 DP 的近似算法。
1989 年,经典的强化学习算法 Q-学习(Q-learning)被提出,它类似于 DP 中的价值迭代算法,但无需预先知道动态特征。
199
更新时间:2025-07-01 07:35
斯普林格已经向公众发布了数百本关于广泛主题的免费图书。这份名单共有408本书,涵盖了广泛的科学和技术主题。为了节省您的时间,我创建了一个与数据和机器学习领域相关的所有书籍(共65本)的列表。
在这些书中,你会发现那些处理数学方面的领域(代数,统计,和更多) ,随着更高级的书籍深度学习和其他高级主题。您还可以在各种编程语言(如 Python、 R 和 MATLAB 等)中找到一些好书。
更新时间:2025-07-01 07:35
你是否曾经听到过人们谈论机器学习,而你却对其含义只有一个模糊的概念呢?你是否已经厌倦了在和同事对话时只能点头呢?现在,让我们一起来改变这个现状吧!
这篇指南是为那些对机器学习感兴趣,但又不知从哪里开始的人而写的。我猜有很多人曾经尝试着阅读机器学习的维基百科词条,但是读着读着倍感挫折,然后直接放弃,希望能有人给出一个更直观的解释。本文就是你们想要的东西。
本文的写作目标是让任何人都能看懂,这意味着文中有大量的概括。但是那又如何呢?只要能让读者对机器学习更感兴趣,这篇文章的任务也就完成了。
机器学习是一种概念:不需要写任何与问题有关的特定代码,泛型算法(Gene
更新时间:2025-07-01 07:35
来源:SSRN 作者:Sophie Emerson, Ruairi Kennedy, Luke O’Shea, and John O’Brien
机器学习是人工智能的一个子领域,它使用统计技术为计算机模型提供从数据集学习的能力,允许模型在没有显示编程的情况下执行特定任务。近年来,机器学习技术激增,人们对其在金融领域的应用也越来越感兴趣。在投资管理中,已被应用于新闻的情绪分析、趋势分析、投资组合优化、风险建模等。那么,机器学习在量化投资中有哪些潜在应用呢?
1.常见的机器学习算法
机器学习算法主要有三种:监督学习、无监督学习和强化学习。监督学习是在已知输入和输出的情况下训练出一个模型,将
更新时间:2025-07-01 07:35
{{use_style}}
欢迎您来到BigQuant!
BigQuant是一个人工智能量化投资平台,平台内聚集了各类人工智能量化开发者、订阅者和学习者。
如果您是一位充满好奇心的学习者,在BigQuant您可以前往:
与知识经验丰富的讲师团队,通过线上+线下的方式,学习AI量化入门、因子构建分析、AI量化实践、实战等,纵观全局获得AI量化全貌,由浅入深进阶成为量化大神。
更新时间:2025-07-01 07:33
近年来,国内量化投资迎来了发展的黄金期,但涉及机器学习的量化投资还比较少。机器学习领域的大神Andrew Ng(吴恩达)老师曾经说过机器学习很大程度上就是特征工程,因此本文主要介绍下特征工程在量化投资领域的应用。
有这么一句话在业界广泛流传: 数据和特征决定了机器学习的上限。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。简单理解为:特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。
**特征工程在量化投资领域有非常适宜的土壤,
更新时间:2025-07-01 07:24
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-07-01 07:20
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-07-01 07:20
更新时间:2025-07-01 07:18
更新时间:2025-07-01 07:18
特征选择是除数据之外最关键的步骤。尽管这一步非常必要,但很多指导文章中却完全忽略这一过程。
本文将展示一些很棒的特征选择方法,帮助读者在机器学习中更加如鱼得水。
特征选择是什么?实际问题中,需要什么样的特征来帮助解决建模并不总是很清晰。在这个问题上,数据总是存在各种问题,比如数据过多,不相关等。特征选择主要研究如何使用算法选择出重要特征。
那为什么不将所有的特征都扔进机器学习模型,然后收工回家呢?
在实际问题中可能没有开源数据集,或者这些数据不总是含有解决问题的相关信息。在这些现实问题面前,特征选择能够最大化数据相关性,降低数据冗余度。这有助于建立好的模型,减小模型大小。
更新时间:2025-07-01 07:17
本文旨在普及机器学习的使用,对于文章涉及到的模型策略不具有实盘参考意义。
XGBoost 是 “Extreme Gradient Boosting”的简称,其中“Gradient Boosting”来源于附录1.Friedman的这篇论文。本文基于 gradient boosted tree ,中文可以叫梯度提升决策树,下面简称GBDT,同时也有简称GBRT,GBM。针对gradient boosted tree的细节也可以参考附录2.这篇网页。
XGBoost 主要是用来解决有监督学习问题,此类问题利用包含多个特征的训练
更新时间:2025-07-01 07:11
更新时间:2025-07-01 07:10
BigQuant平台会不断封装机器学习算法策略,方便用户直接使用策略生成器开发策略,降低策略开发难度。本文对BigQuant平台上策略生成器已经支持的机器学习模型进行简单介绍。
目前,BigQuant策略研究平台支持的机器学习模型有分类模型、回归模型、排序模型和聚类模型四类。
分类模型主要包含以下模型:
模型名称 | 模块名称 |
---|---|
线性分类 | M.logistic_regression. |
线性随机梯度下降分类 | M.linear_sgd_classifier |
支 |
更新时间:2025-07-01 07:06
更新时间:2025-07-01 07:03
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-07-01 07:00
更新时间:2025-07-01 06:59