更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
BigQuant宽客学院伴随着平台的更新,学习和探讨的内容也日益增加。大家对机器学习、深度学习的策略研究越来越深入,新的想法也层出不穷,为了满足大家对探索的渴望,因此我们准备了定期的“BigQuant AI量化专家MeetUp”,本周四正式启动了!BigQuant学院院长、AI量化专家现身BigQuant B站直播间,在线交流、答疑,解决您在AI量化和BigQuant遇到的所有问题!
以导师答疑为主,解决大家在日常开发中遇到的问题:
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
https://www.bilibili.com/video/BV1Jd4y1g7Gi/?vd_source=ecd29bbd04cbefdfa426167c55241973&t=1.3
\
详见上述链接
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
可看视频听老师的详细讲解
问:机器学习在量化中,怎样在过程中查看策略、理解机器学习的逻辑和修正?
答:
1)可解释性
2)如何减少过拟合
目前
更新时间:2024-06-07 10:55
AI量化Meetup 2021年1月28日期问题,配合视频更容易理解。视频详见:
https://bigquant.com/experimentshare/5dd6b4f7a29d4c5d827aeeff05816cfd
\
更新时间:2024-06-07 10:55
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
7月30日Meetup 模板案例:
https://bigquant.com/experimentshare/99d8bec5248e4878b33a21bc119a6671
\
更新时间:2024-06-07 10:55
\
更新时间:2024-06-07 10:55
请教catboost的详细使用方法,对于原先使用xgboost或者stockranker的策略,如何用catboost替换掉xgboost或者stockranker?
https://www.bilibili.com/video/BV1US4y1n79r/?spm_id_from=333.999.0.0
[https://bigquant.com/experimentshare/c2422c6678a8
更新时间:2024-06-07 10:55
本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb
利用市场信息进行量化投资主要涉及以下步骤:
更新时间:2024-06-07 10:55
小白如何学习?出现错误提示后,有没有好的解决方案,有没有专门对接的群?
\
更新时间:2024-06-07 10:55
分享一些量化交易相关的常识信息。
**[多因子选股模型及优缺点](https://bigquant.com/wiki/doc/5asa5zug5a2q6ycj6ikh5qih5z6l5zcn6kn6ke
更新时间:2024-06-07 10:48
**概念定义:**一种使用高级数学模型、统计分析和计算机算法进行交易决策的方法。
**应用范围:**一般包括股票、期货、外汇和衍生品等金融市场;
**主要原理:**依赖于金融市场中的价格、交易量、经济指标等大量历史和实时数据,用以识别市场趋势、估值、波动性等关键因素;使用复杂的数学(包括统计学、概率论、机器学)模型来分析数据和预测市场行为,并通过计算机算法预设的规则和模型自动执行交易。(文末含量化核心资源)
数据分析
历史数据分析:通过分析历史价格、成交量等数据来预测市场趋势。
实时市场数据:收集实时交易数据,对市场
更新时间:2024-06-07 10:48
BigQuant是国内拥有AI人工智能机器学习排序,同时囊括众多优质高级量化投资因子的AI量化投资平台;
AI量化投资平台一般都结合了人工智能(AI)技术和量化投资策略,旨在通过数据分析和机器学习算法提高投资决策的质量和效率。
AI量化投资平台使用人工智能技术,如机器学习、深度学习、自然语言处理等,来分析大量的市场数据和财务信息。平台能够从这些数据中学习模式,做出预测,并据此自动化
更新时间:2024-06-07 10:48
工欲善其事,必先利其器,本文精心整理了各大编程语言常用的量化分析工具,会用其中几个就应该可以在私募找到一份不错的量化工作,如果不想安装推荐 BigQuant 人工智能量化投资 一站式的Python+机器学习+量化投资平台,打开浏览器就可以开发算法策略。
欢迎大家补充~~~
更新时间:2024-06-07 10:43
A股表现整体呈现震荡趋势,熊市周期长,且经常出现虽然指数跌幅较低,但市场上的个股跌幅较大。于是提出猜想:是否能找到比较抗跌的策略,在市场表现一般的时候策略回测较小。
策略的特点:在大盘下跌时,策略相对大盘比较抗跌,策略回撤相对小。
策略的目标市场:中小板(波动率高,活跃度高,流动率高,做出alpha可能性高;且在反转时,上涨的幅度较大)
2个技术指标因子+1个换手率因子+1个资金流因子+1个量价因子
。分类器对新的输入进行输出的预测,这个过程称为分类。
当输出变量Y为有限个离散值时,成为分类问题,那如果输出变量Y是连续值时,又该怎样处理呢?可能大家马上想到这其实就是回归问题,用回归算法就可以解决。的确如此,但很多时候,
更新时间:2024-05-27 03:42
Stockranker是专为选股量化而设计的机器学习算法,其选股思路是根据训练得到的模型,计算股票池中股票的当日评分,根据评分对股票池中的股票进行排序,排序靠前的股票就是当日选出的股票。
这种选股逻辑意味着不论股票的评分是多少,只要排序靠前就能被选中。实际上排序靠前股票的评分有不小差距。而评分反应的是股票的投资价值,评分高表明该股票的投资价值高,评分低表明该股票的投资价值低。因此排序算法仅能反应当天的相对投资价值,也就是矬子里面拔将军,不能反映股票的绝对投资价值。
而评分则不一样,他反应的是股票的绝对投资价值,也就是把股票的投资价值量化了。 本策略的逻辑就是根据评分来选股。
更新时间:2024-05-24 10:57
人工智能,深度学习,机器学习……不管你在从事什么工作,都需要了解这些概念。否则的话,三年之内你就会变成一只恐龙。 —— 马克·库班
库班的这句话,乍听起来有些偏激,但是“话糙理不糙”,我们现在正处于一场由大数据和超算引发的改革洪流之中。
首先,我们设想一下,如果一个人生活在20世纪早期却不知电为何物,是怎样一种体验。在过去的岁月里,他已经习惯于用特定的方法来解决相应的问题,霎时间周围所有的事物都发生了剧变。以前需要耗费大量人力物力的工作,现在只需要一个人和电就能完成了。
而在现在的背景下,机器学习、深度学习就是新的“电力”。
所以呢,如果你还不了解深度学习有多么强大,不妨就从这篇文章开
更新时间:2024-05-22 10:41
本篇文章中,我们来为大家完整介绍一个AI量化策略的组成结构以及涉及的基本概念,希望可以帮助大家对AI量化策略建立一个全面初步的认识。
在认识一个人工智能量化投资策略之前,我们首先来了解几个基本概念:人工智能 、 量化投资和机器学习,大家可以通过快速浏览下面这两篇文章,对前两个概念进行初步了解。
机器学习被评为人工智能中最能体现人类智慧的技术,开
更新时间:2024-05-22 10:34