机器学习

机器学习在金融领域的应用日益广泛,为金融业务的智能化提供了强大动力。它运用算法和模型,自动从海量数据中学习和提取有用信息,无需人工进行复杂编程。在金融风控方面,机器学习技术可帮助银行、保险公司等机构更准确地识别欺诈行为,降低信贷风险。在投资策略上,通过对历史数据的深度学习,机器能预测市场走势,为投资者提供更精准的建议。同时,机器学习还能优化客户服务,例如通过聊天机器人提供24小时在线咨询,或根据客户行为数据提供个性化金融产品推荐。总的来说,机器学习不仅提升了金融业的效率和智能化水平,也在重塑我们的金融生态。

56th Meetup

小白学习

小白如何学习?出现错误提示后,有没有好的解决方案,有没有专门对接的群?

机器学习/深度学习

  1. 机器学习在量化中,怎样在过程中查看策略、理解机器学习的逻辑和修正?
  2. 目前股票策略中使用最广泛的机器学习和深度学习的模型有哪些?
  3. 机器学习或深度学习策略回撤过高,该结合什么风险控制或择时策略比较好?
  4. 如果使用深度学习或机器学习自动挖掘因子?
  5. 使用深度学习模型时,总觉得泛化性能很差。加上一些提升泛化能力的手段, 比如正则、dropout等,好像没什么用。请问有没有什么较好的方法?

\

策略调优

  1. 如何判断策略失效以及失效后的处理

更新时间:2024-06-07 10:55

超参寻优调参顺序

策略案例


https://bigquant.com/experimentshare/fe8ec83484ca44148602d39a58545d75

\

更新时间:2024-06-07 10:55

2023-AI量化Meetup

\

更新时间:2024-06-07 10:55

如何用catboost替换stockranker算法

问题

请教catboost的详细使用方法,对于原先使用xgboost或者stockranker的策略,如何用catboost替换掉xgboost或者stockranker?

视频

https://www.bilibili.com/video/BV1US4y1n79r/?spm_id_from=333.999.0.0

策略源码

[https://bigquant.com/experimentshare/c2422c6678a8

更新时间:2024-06-07 10:55

超参优化

更新

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


7月30日Meetup 模板案例:

策略案例

https://bigquant.com/experimentshare/99d8bec5248e4878b33a21bc119a6671

\

更新时间:2024-06-07 10:55

机器学习/深度学习策略理解

视频讲解

可看视频听老师的详细讲解

机器学习逻辑理解

问:机器学习在量化中,怎样在过程中查看策略、理解机器学习的逻辑和修正?

答:

1)可解释性

2)如何减少过拟合

3)机器学习/深度学习课程

常见的机器学习/深度学习模型

目前

更新时间:2024-06-07 10:55

AI量化交易常识

分享一些量化交易相关的常识信息。

五因子模型公式及应用

五因子模型是哪五个因子

**[多因子选股模型及优缺点](https://bigquant.com/wiki/doc/5asa5zug5a2q6ycj6ikh5qih5z6l5zcn6kn6ke

更新时间:2024-06-07 10:48

AI量化交易是什么意思

**概念定义:**一种使用高级数学模型、统计分析和计算机算法进行交易决策的方法。

**应用范围:**一般包括股票、期货、外汇和衍生品等金融市场;

**主要原理:**依赖于金融市场中的价格、交易量、经济指标等大量历史和实时数据,用以识别市场趋势、估值、波动性等关键因素;使用复杂的数学(包括统计学、概率论、机器学)模型来分析数据和预测市场行为,并通过计算机算法预设的规则和模型自动执行交易。(文末含量化核心资源

核心工具

数据分析

历史数据分析:通过分析历史价格、成交量等数据来预测市场趋势。

实时市场数据:收集实时交易数据,对市场

更新时间:2024-06-07 10:48

国内AI量化投资平台有哪些

BigQuant是国内拥有AI人工智能机器学习排序,同时囊括众多优质高级量化投资因子的AI量化投资平台;

AI量化投资平台一般都结合了人工智能(AI)技术和量化投资策略,旨在通过数据分析和机器学习算法提高投资决策的质量和效率。

概念

AI量化投资平台使用人工智能技术,如机器学习、深度学习、自然语言处理等,来分析大量的市场数据和财务信息。平台能够从这些数据中学习模式,做出预测,并据此自动化

更新时间:2024-06-07 10:48

每一个宽客都应该收藏的量化“利器”

工欲善其事,必先利其器,本文精心整理了各大编程语言常用的量化分析工具,会用其中几个就应该可以在私募找到一份不错的量化工作,如果不想安装推荐 BigQuant 人工智能量化投资 一站式的Python+机器学习+量化投资平台,打开浏览器就可以开发算法策略。

欢迎大家补充~~~

编程语言

  1. Python
  2. R
  3. Matlab
  4. Julia
  5. Java
  6. JavaScript
  7. Scala
  8. Ruby
  9. Frameworks

Python

  • [numpy 7](http://li

更新时间:2024-06-07 10:43

机器学习应用于底部反转策略的表现

策略简介

A股表现整体呈现震荡趋势,熊市周期长,且经常出现虽然指数跌幅较低,但市场上的个股跌幅较大。于是提出猜想:是否能找到比较抗跌的策略,在市场表现一般的时候策略回测较小。

策略的特点:在大盘下跌时,策略相对大盘比较抗跌,策略回撤相对小。

构建步骤

确定策略目标市场

策略的目标市场:中小板(波动率高,活跃度高,流动率高,做出alpha可能性高;且在反转时,上涨的幅度较大)

构建策略核心因子

2个技术指标因子+1个换手率因子+1个资金流因子+1个量价因子

![](/wiki/api/attachments.redirect?id=5fbec9e0-

更新时间:2024-05-27 08:32

因子构建与标注——自定义标注

导语

本文标题为自定义标注,其实就是想告诉大家如何灵活地对数据进行标注,从而得到预测能力更强的机器学习算法。

认识分类和回归

谈标注一词之前,我们先简单了解机器学习算法中的分类和回归。

分类问题是监督学习的一个核心问题。在监督学习中,当输出变量Y取有限个离散值时,预测问题便成为分类问题。监督学习从数据中学习一个分类模型,称为分类器(classifier)。分类器对新的输入进行输出的预测,这个过程称为分类。

当输出变量Y为有限个离散值时,成为分类问题,那如果输出变量Y是连续值时,又该怎样处理呢?可能大家马上想到这其实就是回归问题,用回归算法就可以解决。的确如此,但很多时候,

更新时间:2024-05-27 03:42

Stockranker评分的另类用法

策略逻辑

Stockranker是专为选股量化而设计的机器学习算法,其选股思路是根据训练得到的模型,计算股票池中股票的当日评分,根据评分对股票池中的股票进行排序,排序靠前的股票就是当日选出的股票。

这种选股逻辑意味着不论股票的评分是多少,只要排序靠前就能被选中。实际上排序靠前股票的评分有不小差距。而评分反应的是股票的投资价值,评分高表明该股票的投资价值高,评分低表明该股票的投资价值低。因此排序算法仅能反应当天的相对投资价值,也就是矬子里面拔将军,不能反映股票的绝对投资价值。

而评分则不一样,他反应的是股票的绝对投资价值,也就是把股票的投资价值量化了。 本策略的逻辑就是根据评分来选股。

更新时间:2024-05-24 10:57

深度学习入门指南:25个初学者需要知道的概念

人工智能,深度学习,机器学习……不管你在从事什么工作,都需要了解这些概念。否则的话,三年之内你就会变成一只恐龙。 —— 马克·库班

库班的这句话,乍听起来有些偏激,但是“话糙理不糙”,我们现在正处于一场由大数据和超算引发的改革洪流之中。

首先,我们设想一下,如果一个人生活在20世纪早期却不知电为何物,是怎样一种体验。在过去的岁月里,他已经习惯于用特定的方法来解决相应的问题,霎时间周围所有的事物都发生了剧变。以前需要耗费大量人力物力的工作,现在只需要一个人和电就能完成了。

而在现在的背景下,机器学习、深度学习就是新的“电力”。

所以呢,如果你还不了解深度学习有多么强大,不妨就从这篇文章开

更新时间:2024-05-22 10:41

AI量化策略

导语

本篇文章中,我们来为大家完整介绍一个AI量化策略的组成结构以及涉及的基本概念,希望可以帮助大家对AI量化策略建立一个全面初步的认识。


基本概念

概念介绍

在认识一个人工智能量化投资策略之前,我们首先来了解几个基本概念:人工智能量化投资机器学习,大家可以通过快速浏览下面这两篇文章,对前两个概念进行初步了解。

机器学习被评为人工智能中最能体现人类智慧的技术,开

更新时间:2024-05-22 10:34

特征选择的实践重要性

导语

特征选择在许多方面都是适用的:它是对抗维度灾难的最佳武器;它可以减少整体训练时间;它也可以有效防止过拟合现象,提高模型的泛化能力。

如果要对动物进行分类,你可以很快的发现许多相关的属性或特征对模型毫无益处。例如,绝大多数动物都恰好拥有1颗心脏,从机器学习的角度来看, 心脏个数这一特征就毫无用处。另一方面,一个动物是否有翅膀则可能是一个很好的预测因子。

此外,好的预测因子和无关的特征夹杂在一起会对结果模型结果产生负面影响。更不用说这些无关的数据还会增加训练耗时,或者产生过拟合现象了·。

特征选择

**特征选择是一种缩小在预测建模过程中使用的特征或属性范围的过程

更新时间:2024-05-22 10:25

策略中调用其他因子_AI

策略案例

https://bigquant.com/experimentshare/5cfd9186208047518a995e4394ba1099

\

更新时间:2024-05-21 08:15

DeepAlpha短周期因子系列研究之:GATs在量化选股中的应用

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 10:26

用支持向量机-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 10:24

用线性-回归算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 07:17

量化机器学习系列分享(一)机器学习介绍与线性回归模型

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

[https://bigquant.com/wiki/doc/6yep5yyw5py65zmo5a2m5lmg57o75yix5yig5lqr77yi5lia77yj5py65zmo5a2m5lmg5lul57un5lio57q5ocn5zue5b2s5qih5z6l-NIQe5FA4dS](https://bigquant.com/wiki/doc/6yep5yyw5py65zmo5a2m5lmg57o75yix5yig5lqr77yi5lia77yj5py65zmo5a2m5lmg5lul57un5li

更新时间:2024-05-20 06:55

量化机器学习系列分享(一)机器学习介绍与线性回归模型

1. 人工智能与机器学习的概念

1.1 人工智能的概念

人工智能(Artificial Intelligence,AI)是一门研究如何使计算机系统具备类似于人类智能的能力的领域

人工智能的子领域示例:

  1. 机器学习:机器学习是人工智能的子领域,用于从数据中学习并改善系统性能
  2. 自然语言处理:NLP致力于使计算机能够理解、处理和生成人类语言
  3. 计算机视觉:计算机视觉使计算机能够识别和解释图像和视频数据,用于图像识别、目标检测和人脸识别等任务
  4. 机器人学:机器人学研究如何设计、构建和控制机器人,使它们能够执行各种任务
  5. **专家系

更新时间:2024-05-20 06:52

lightgbm多因子选股

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

[ht

更新时间:2024-05-20 06:21

适合初学者的 10 大机器学习算法

英国数学家、计算机科学家、逻辑学家和密码分析家艾伦·图灵推测机器:

“这就像一个学生从他的老师那里学到了很多东西,但在他自己的工作中增加了很多东西。发生这种情况时,我觉得人们有义务将机器视为显示智能。”

举一个机器学习影响的例子,Man group 的 AHL Dimension 计划是一个价值 51 亿美元的对冲基金,部分由 AI 管理。成立后,到 2015 年,其机器学习算法为基金贡献了一半以上的利润,尽管其管理的资产要少得多。

[ ![交易中的机器学习{w:100}{w:100}{w:100}](https://d1rwhvwstyk9gu.cloudfront.net/2

更新时间:2024-05-20 06:20

主动学习(Active Learning)

\

背景

机器学习的研究领域包括有监督学习(Supervised Learning)无监督学习(Unsupervised Learning),半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)等诸多内容。针对有监督学习和半监督学习,都需要一定数量的标注数据,也就是说在训练模型的时候,全部或者部分数据需要带上相应的标签才能进行模型的训练。但是在实际的业务场景或者生产环境中,工作人员获得样本的成本其实是不低的,甚至在某些时候是相对较高的,那么如何通过较少成本来获得较大价值的标注数据,进一步地提升

更新时间:2024-05-20 06:19

分页第1页第2页第3页第4页第5页第6页第12页
{link}