本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 07:25
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 07:06
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 06:42
BigQuant策略模板库旨在帮助用户快速开始并优化他们的量化投资策略。无论您是初学者还是经验丰富的投资者,我们的策略模板都能提供从简单到复杂的多种投资策略选择。这些模板涵盖了基础策略、中级策略和高级策略。
模版使用
更新时间:2024-04-28 02:41
聚类算法是一种无监督学习算法,它和监督学习任务下的分类算法是有明显对比的
聚类算法的目的,是将数据集中的数据,划分为不同的类别,但是这个类别没有标签去衡量
更新时间:2024-01-10 11:34
分类问题的标签是离散型的变量,我们的目的是用特征,来预测标签归属于几个类别当中的某一种
本次分享我们主要讨论二分类问题
对于二分类问题,我们需要把定性的类别,转换为定量的数字,来让计算机理解类别的概念
更新时间:2024-01-10 03:19
上次分享我们提到过,模型的好坏评价标准,是模型在测试集上的预测是否准确,好比一个学生在期末考试当中拿高分才是学的好
模型在测试集上的预测误差(Error),可以分为三种来源
偏差(Bias):高偏差的模型表现为:
对于一个预测样本,不仅预测不准,而且如果模型再训练一遍,还是同样地预测不准
好比我们期待一个同学期末考90分,但是他只考了50分,如果再给他一次机会,重学一遍再参加考试,他还是考了50分,距离90分一直很远
方差(Variance):高方差的模型表现为:
对于一个预测样本,
更新时间:2024-01-10 03:19
我们今天分享的四种模型,包括上次分享的逻辑回归,都是一些轻量级的分类模型,适用于数据量少,特征量少的分类任务
\
支持向量机(Support Vector Machine)是在神经网络流行之前最强大的机器学习算法
SVM在二分类问题上的逻辑原理是:
比方说以下图像中
是描述给定一组输入随机变量条件下另一组输出变量的条件概率分布的模型。基于条件随机场,我们可以建立观测指标值和走势状态及走势状态与走势状态之间复杂的函数依赖关系,从而,当给定新的观测
更新时间:2023-06-13 06:53
传统因子表现不佳,因子择时大显身手在历史上表现良好的规模、反转和流动性因子在17年以来都出现了明显的回撤,导致主流多因子选股策略表现欠佳。在这样的大背景下,如何把握Alpha因子的风格轮动,选择最有效的风格因子,成为重要的研究课题。
基于机器学习的因子择时框架本报告选择常见的7个风格因子,通过机器学习方法,基于历史数据提炼因子风格轮动的规律,将因子IC历史信息、宏观经济变量、市场变量等信息作为特征,采用性能优良的XGBoost模型对因子未来的IC进行预测,来衡量不同风格因子未来选股的有效性。在因子配权时,赋予预期表现好的因子更高的权重,而减小预期表现不佳的因子的权重。
基
更新时间:2023-06-13 06:53
\
更新时间:2023-06-13 06:50
AI量化策略中如何选择合适的因子
https://www.bilibili.com/video/BV1J24y1f7mJ/?spm_id_from=333.999.0.0
{{membership}}
[/wiki/static/upload/42/4267409e-a9f4-42db-bb79-1321ba5e4c59.pdf](/wiki/static/upload/42/4267409e-a9f4
更新时间:2023-05-06 07:23
作者:shen1
简介:鼠、虎、主升浪等三个系列策略作者,已实现1+量化策略实盘
今年8月份,市场整体行情较差,沪指跌了1.77%,深证指数跌了4.82%,创业板指跌了3.75%,虽然沪指跌幅较低,但市场上的个股跌幅较大。于是提出猜想:是否能找到比较抗跌的策略,使其在市场下行的时候,回撤较小?
策略的特点:在大盘下跌时,策略相对大盘比较抗跌,策略回撤相对小。
策略的目标市场:中小板(波动率高,活跃度高,流动率高,做出alpha可能性高;且在反转时,上涨的幅度较大)
2个技术指
更新时间:2023-05-06 07:08
随着交易数据量越来越大,金融领域的各种应用已经验证了使用人工智能可以更好地进行投资或业务决策,也越来越多人相信人工智能技术在金融领域的应用前景。人工智能提供了一种适用于从个人数据到业务流程的高效数据分析工具。 与此同时,越来越多金融机构开始使用机器学习方法,以期在市场竞争中赢得优势。量化投资机构逐渐抛弃传统的分析方法,转而使用机器学习算法预测市场走势和选择投资组合。 与传统投资方式相比,量化投资方式具有更高效率及准确性。量化投资是一种基于计算机系统而生成的投资策略选择方法,可以对数学模型进行监理,在实现交易理念活动过程中构建更为完善规范的量化投资评价体系。在对模型进行监理的基础上,再对历史数据
更新时间:2023-05-04 23:27
\
更新时间:2023-05-04 15:10
• 点击新建对话,创建一个新对话
• 点击输入框,开始与QuantChat交流
• 您可以直接输入以下对话
是目前较为先进的机器学习方法。
可以从订单簿提炼指标库来刻画其特征订单簿主要包括买一价、卖一价、买一量、卖一量等基础指标,并可以衍生出深度、斜率、相对价差等指标,其他指标包括持仓量、成交量、基差等,共计17个指标。还可以引入常见的技术分析指标如RSI、KDJ、MA、EMA等
更新时间:2023-04-21 05:13
编写线段树代码
更新时间:2023-02-10 06:37
你好
更新时间:2023-02-10 06:37
用ChatGPT生成的ChatGPT教程
更新时间:2023-02-03 21:30