如何获取策略模拟资金曲线信息 ,再反向输出集成策略?
https://www.bilibili.com/video/BV1wR4y1C7ZT/?vd_source=ecd29bbd04cbefdfa426167c55241973
[https://bigquant.com/experimentshare/b8a38c78cb844ac3bc3821e42497ff5
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
【旧版说明】此文档为旧版,相关新版文档可参考:🌟102-第一个AI策略
https://bigquant.com/experimentshare/1c44e0bf56db424d8f2a5e617759a300
\
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
目前平台提供新版的因子分析模块, 请移至bigalpha
7月30日Meetup 模板案例:
https://bigquant.com/experimentshare/b83f6a9c950a43a595d41f1d911dcaca
\
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
参数寻优获得/夏普信息比/最大回撤/胜率-2
8月19日Meetup模板:第二种方式
https://bigquant.com/experimentshare/5e82e63fe5154eb58b69ffa37998d588
\
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
【此文档为旧版】 相关新版文档参考:
https://bigquant.com/wiki/doc/ai-rq8QOC2fDb
https://bigquant.com/experimentshare/16571b942a8a4a92a4914c15f65d0883
\
更新时间:2024-06-07 10:55
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-07 10:55
最大回撤(Maximum Drawdown,简称 MDD)是衡量投资组合或资产在选定时间段内从峰值跌至谷底的最大损失百分比。它是一个重要的风险指标,用于评估投资的下行风险。最大回撤越大,意味着资产或投资组合的潜在损失越大。BigQuant的金融市场数据因子平台以及AI量化策略平台(PC端),可以验证各种AI量化策略的最大回撤实例效果。
:
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 07:17
本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
[https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7c588b8d](https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7
更新时间:2024-05-20 06:33
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors
https://bigquant.com/wiki/doc/dai-PLSbc1SbZX
[ht
更新时间:2024-05-20 06:21
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
以双均线策略为例,采用新的DataSource接口实现基金数据的读取及策略回测
[https://bigquant.com/experimentshare/ac13b3c580cd4f06ad2cce26dd718ecc](https://bigquant.com/experimentshare/ac13b3c580cd4f06ad2cce2
更新时间:2024-05-20 06:13
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 02:15
更新时间:2024-05-20 02:09
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/0f3871389f5846009ba425fe066d03b2
\
更新时间:2024-05-20 01:07
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/72d5601550164505aad979f7265f8fec
\
更新时间:2024-05-20 00:50
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
本文主要分享一个基于Deep Q Network的对于个股的择时策略
本文主要使用的是Deep Q Network。DQN是强化学习的一种方法,结合了Q-learning和深度学习神经网络。
Q-learning是用一张表来记录各个状态下的各个行为的q值,它能记录的状态
更新时间:2024-05-20 00:40
本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:
https://bigquant.com/wiki/doc/5z65lqo5y2p5pw055qe6ywn5a55lqk5pit-6x1P1362eJ
[https://bigquant.com/experimentshare/6b05d7bd134e420387acfa25c37b283f](https://bigquant.co
更新时间:2024-05-17 09:23
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 06:42