本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
以双均线策略为例,采用新的DataSource接口实现基金数据的读取及策略回测
[https://bigquant.com/experimentshare/ac13b3c580cd4f06ad2cce26dd718ecc](https://bigquant.com/experimentshare/ac13b3c580cd4f06ad2cce2
更新时间:2024-05-20 06:13
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 02:15
更新时间:2024-05-20 02:09
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/0f3871389f5846009ba425fe066d03b2
\
更新时间:2024-05-20 01:07
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
https://bigquant.com/experimentshare/72d5601550164505aad979f7265f8fec
\
更新时间:2024-05-20 00:50
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
本文主要分享一个基于Deep Q Network的对于个股的择时策略
本文主要使用的是Deep Q Network。DQN是强化学习的一种方法,结合了Q-learning和深度学习神经网络。
Q-learning是用一张表来记录各个状态下的各个行为的q值,它能记录的状态
更新时间:2024-05-20 00:40
本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:
https://bigquant.com/wiki/doc/5z65lqo5y2p5pw055qe6ywn5a55lqk5pit-6x1P1362eJ
[https://bigquant.com/experimentshare/6b05d7bd134e420387acfa25c37b283f](https://bigquant.co
更新时间:2024-05-17 09:23
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 06:42
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 03:49
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 02:54
本文为旧版实现,供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
https://bigquant.com/experimentshare/53afe5c70e1f48b28f66eeb980d86ebb
\
更新时间:2024-05-15 06:37
更新时间:2023-08-16 09:10
更新时间:2023-01-03 07:44
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-05 08:13
Renaissance Technologies文艺复兴科技公司交易策略揭秘记录!该短片中详细介绍了文艺复兴科技公司多年来如何开发各种交易策略,从早期的均值回归到利用内核方法等等。
https://www.bilibili.com/video/BV1ae4y1f7Em
\
更新时间:2022-10-10 12:50
分享头部量化私募团队、策略、深度资料等
\
更新时间:2022-10-10 09:45
文献来源:Jennifer Bender, Jerry Le Sun and Rick Thomas, Asset Allocation vs. Factor Allocation – Can We Build a Unified Method?[J] The Journal of Portfolio Management, 2018, 45 (2) 9-22
推荐原因:近60年间,股票和债券等资产一直是多元化投资组合的主要基石。长期以来,投资者普遍认为,对不同类别的资产进行分散投资足以为组合带来多元化投资的裨益,但近期在市场大幅下挫过程中,对不同类别资产进行分散投
更新时间:2022-10-09 10:01
中国商品期货市场近30年来取得历史性突破和跨越式发展。近年来,伴随股票市场多因子选股策略的风靡,越来越多的期货界投资人士,在尝试使用多因子框架构建商品市场的CTA策略。这类策略的核心是找到各类可以影响商品市场价格涨跌的公共因子,如资产动量、波动率、宏观基本面等,构建统一框架来评估资产价格上涨、下跌的潜力,进而构建商品市场的组合投资策略,多因子策略是近年来CTA策略的一个重要分支。本文主要尝试对多因子CTA策略构建中一些常用的因子进行测评,并试图构建一个基本的多因子CTA策略,以深入洞察该类策略的运作,供投资者参考
测试的因子包括技术面因子以及宏观基本面两类因子。技术面因子采用横
更新时间:2022-10-08 10:30