高频交易

高频交易是金融市场上的闪电般的交易活动,通过先进的算法和极速的计算机网络,在毫秒甚至微秒级别完成买卖决策,追求微小但稳定的利润。这种交易依赖复杂的数学模型,对市场数据进行实时分析并快速做出反应。由于交易速度极快,高频交易能在极短时间内捕捉到市场上的微小变动并从中获利,但也因其高速和大规模的特性,有时可能加大市场的波动性和系统风险。高频交易在现代金融市场中占据重要地位,既是技术进步的产物,也带来了市场监管和风险管理的新挑战。

光大证券-技术指标高频系列(一)——基于KDJ优化指标的高频交易

/wiki/static/upload/26/26e8ef87-1e69-42d3-9dea-e8be4ae5e150.pdf

\

更新时间:2025-02-27 07:44

方正证券-“聆听高频世界的声音”系列研究(三)-跟踪聪明钱:从分钟行情数据到选股因子

/wiki/static/upload/98/98b68b06-687a-48cb-98af-760360071119.pdf

\

更新时间:2025-02-27 07:44

【历史文档】高阶应用技巧

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

平台回测机制

AI量化策略研究平台回测机制的概览图:

AI量化策略研究平台回测主体有两个使用频率很高的函数:initialize函数和handle_data函数,理解了这两个函数开发策略就再也不是什么难事了,结合上面K线图来理解这两个函数。 从图中可以看出,其实一共有26个事件,即26根K线,第一根K线既对应

更新时间:2025-02-27 02:34

基于tick的日内接刀策略

https://bigquant.com/experimentshare/665da325d93a48c397f0fe70abdca825

\

更新时间:2025-02-27 02:34

【历史文档】策略示例-基于订单流的高频择时交易策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略示例-均线突破策略-Tick

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略示例-基金策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略示例-基金智能策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

【历史文档】策略-策略构建

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2025-02-27 02:34

量化投资

导语

1989年发表的论文《The Fundamental Law of Active Management》及其随后的相关论文揭示了寻求主动投资的alpha收益的数量化关系,这为主动组合投资管理带来一套令人信服的分析框架,这个数量化关系很好揭示了数量化技术(量化投资)可以如何或者应该如何切入投资管理领域。

和被动组合管理(passive porfolio management)相比,主动组合管理(active porfolio management)更显投资水平的能力,或者说运气。被动投资力求完全复制相应的基准成分股及其权重,所以每当某指数做成分股的调整时,新入选的股票

更新时间:2024-06-12 02:56

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|

更新时间:2024-06-11 03:20

2023-AI量化Meetup

\

更新时间:2024-06-07 10:55

如何将60分钟K线合成120分钟K线

问题

如何利用60分钟K线来合成120分钟K线呢?

视频

https://www.bilibili.com/video/BV1d54y1d7tv/

策略源码

https://bigquant.com/experimentshare/4e081ef44d3246f48551c6eee74f629d

\

更新时间:2024-06-07 10:55

高频回测算子使用(HFTrade)

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

2022-AI量化Meetup导览

\

更新时间:2024-06-07 10:55

2021-AI量化Meetup导览

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}导语

2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me

更新时间:2024-06-07 10:55

如何开发带有反馈系统的策略?

问题

如何开发带有反馈系统的策略?

解答

比如今天买明天卖的策略,根据股票每天的收益情况,反馈给策略,进行参数调整,这样就可以让策略每天都是新鲜的,并且是真正贴合市场的活的策略。

模型动态更新


{w:100}深度强化学习


基于深度强化学习的股票交易

[1] Deep Reinforcem

更新时间:2024-06-07 10:55

高频动量策略与主观超短交易

分享主题

高频动量策略与主观超短交易

\

视频回放

https://www.bilibili.com/video/BV1eG4y147Ki/

\

直播资料

/wiki/static/upload/70/70110d2a-6075-45b4-ad3c-618340dc720f.pdf

\

更新时间:2024-06-07 10:55

日线策略信号进行日内择时

【旧版使用说明】此文档为旧版本,相关文档可参考:

https://bigquant.com/wiki/doc/126-KkS3pYVIAH

20210624 Meetup 策略案例

https://bigquant.com/experimentshare/f235e9ce26dc42b9ae9fb57ca6574bf1

\

更新时间:2024-06-07 10:55

49th Meetup

Q1-@james:有什么另类的标注可以推荐下?

https://bigquant.com/wiki/doc/-0kcMgSnQXw

https://bigquant.com/wiki/doc/rengongzhineng-xilie-ershijiu-shouyi-linglei-biaoqian-zhengquan-fuben-xRMNFmmg00

{w:100}{w:100}{w:100}

更新时间:2024-06-07 10:55

59th Meetup

本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb

因子挖掘

如何利用市场信息?

利用市场信息进行量化投资主要涉及以下步骤:

  1. 数据收集:首先,需要收集和整理市场数据,包括股票价格、交易量、基本面数据、新闻、宏观经济数据等。这些信息可以从各种数据供应商或公开数据源获取。
  2. 数据预处理:对收集到的数据进行清洗和预处理,处理缺失值、异常值、重复值等,保证数据的准确性和完整性。
  3. 特征工程:根据投资策略和模型需求,进行特征工程,提取有价值的特征和信号。
  4. 模型构建:选择合适的模型(如回归模型、机器学习模型、深度学习模型

更新时间:2024-06-07 10:55

简单网格交易日内择时

AI量化Meetup 2021年1月28日期问题,配合视频更容易理解。视频详见:

2021-AI量化Meetup导览

策略案例

https://bigquant.com/experimentshare/5dd6b4f7a29d4c5d827aeeff05816cfd

\

更新时间:2024-06-07 10:55

回测引擎常用功能示例

{{membership}}

https://bigquant.com/codeshare/ccb0fdad-c4da-424e-ace1-dd57ace94cec

\

更新时间:2024-06-07 10:55

高频回测模块择时策略

问题

高频回测模块择时策略

\

视频

https://www.bilibili.com/video/BV1S44y1y7dc?p=2&share_source=copy_web

策略源码

8月19日Meetup策略模板:

[https://bigquant.com/experimentshare/a6bae485ffcc47819510b788ddfad338](https://bigquant.com/experime

更新时间:2024-06-07 10:55

分页第1页第2页第3页第4页
{link}