高频交易

高频交易是金融市场上的闪电般的交易活动,通过先进的算法和极速的计算机网络,在毫秒甚至微秒级别完成买卖决策,追求微小但稳定的利润。这种交易依赖复杂的数学模型,对市场数据进行实时分析并快速做出反应。由于交易速度极快,高频交易能在极短时间内捕捉到市场上的微小变动并从中获利,但也因其高速和大规模的特性,有时可能加大市场的波动性和系统风险。高频交易在现代金融市场中占据重要地位,既是技术进步的产物,也带来了市场监管和风险管理的新挑战。

【历史文档】策略示例-基金策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 02:29

【历史文档】策略示例-均线突破策略-Tick

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 02:13

【历史文档】策略示例-基于订单流的高频择时交易策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 10:40

【历史文档】策略-策略构建

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 09:34

平台回测机制

AI量化策略研究平台回测机制的概览图:

AI量化策略研究平台回测主体有两个使用频率很高的函数:initialize函数和handle_data函数,理解了这两个函数开发策略就再也不是什么难事了,结合上面K线图来理解这两个函数。 从图中可以看出,其实一共有26个事件,即26根K线,第一根K线既对应

更新时间:2024-05-15 02:10

基于tick的日内接刀策略

https://bigquant.com/experimentshare/665da325d93a48c397f0fe70abdca825

\

更新时间:2024-05-15 02:10

华安证券-高频视角下成交额蕴藏的Alpha:市场微观结构剖析之七

20200610-华安证券-高频视角下成交额蕴藏的Alpha:市场微观结构剖析之七\n该篇研报介绍了一系列的高频因子,主要思想是探寻日内特定的一些时间段的成交量,占全天总成交量的占比,之后将这些因子在时序上进行求平均、方差、偏度、峰度等操作


研报地址:

/wiki/static/upload/05/0559d196-babd-4007-a12c-be1b55adf0e6.pdf




\

策略源码:


{{members

更新时间:2024-04-28 06:59

为啥order_percent()有错误?(HFTrade (高频 回测/模拟/实盘) (v2) 中)

  • your performance may suffer as PyTables will pickle object types that it cannot
  • map directly to c-types [inferred_type->mixed,key->block3_values] [items->Index(['instrument', 'name', 'suspend_type', 'suspend_reason', 'suspended'], dtype='object')]
  • pytables.to_hdf(
  • [2023-11-09 19:42:22

更新时间:2023-11-15 06:20

如何把次日开盘数据加入策略?

如何把次日开盘数据加入策略?比如竞价金额,竞价成交量。开盘涨幅。

更新时间:2023-10-17 01:36

为什么 高频特征抽取输出值为None?

见 链接:

https://bigquant.com/experimentshare/e939e9c9a1ef43ec8f267205b530219b

\

更新时间:2023-10-09 03:36

期货不能用代码列表这种组件吗?

{w:100}输出:::

{w:100}


\

更新时间:2023-10-09 03:29

有期货相关的AI策略吗?

求一个范例,谢谢

更新时间:2023-10-09 03:24

有小时级别的AI策略范例吗?

最好更细粒度的, 比如分钟级别。

好像没找到。 求例子。

更新时间:2023-10-09 03:04

日历效应实现——回测模块

https://bigquant.com/codeshare/108f8f5f-14e7-4a73-ba80-d9daa1f4f87d

\

更新时间:2023-10-09 02:36

WorldQuant Alpha101因子 附录三:所有因子的SQL实现

https://bigquant.com/codeshare/4515d40b-c2f4-4439-a2c9-92931adb0c6d

\

更新时间:2023-08-21 10:56

策略报错

更新时间:2023-08-02 06:00

BigQuant 最佳实践

  • BigQuant使用案例
  • 最佳使用方式

\

更新时间:2023-06-29 06:56

5-9 直播代码 潮汐因子

{{membership}}

https://bigquant.com/experimentshare/ba243c6cd508478bacc881069da6dfea

\

更新时间:2023-05-31 07:22

2023.5-直播代码-惊恐收益因子研究

{{membership}}

https://bigquant.com/experimentshare/ff206779bb0f4851ac0fede5acb195e6

\

更新时间:2023-05-31 07:19

5-10 直播代码 高频潮汐因子

{{membership}}

https://bigquant.com/experimentshare/edc99d567ace42268817c4e5c34c4668

\

更新时间:2023-05-31 07:19

网格交易策略-期货分钟

https://bigquant.com/experimentshare/d8fb2ec62bec4b57b09947850c349109

\

更新时间:2023-05-23 02:30

量化择时


\

更新时间:2023-05-04 15:10

如何高效、优雅地进行高频策略回测?

今天与大家探讨高频策略的回测框架。高频策略的研发,有两个显著的特点: 一是数据量大,与日频相比,分钟频率就是百倍的数据量, 到秒级别更达到上千倍的差异。 二是对交易细节敏感,回测系统要尽可能去模拟真实交易的情形,甚至要比真实交易更严格,这样研发出来的高频策略才有实盘的价值。所以高频策略要考虑的细节很多,决策时间点,成交价,手续费,流动性等。细节考虑的不到位,策略回测和实盘交易就会差异很大,降低策略研发的价值和效率。 如何在大数据量前提下,尽可能的将细节考虑到位,就是高频策略回测系统的挑战,也就是严谨和高效的权衡。

下面和大家一起构建一个秒级别的策略回测框架。 一般来说,回测框架会包含以下几个

更新时间:2023-04-10 09:18

用LSTM神经网络模型训练期货高频数据

高频交易经常被提起,却始终蒙着一层神秘面纱,仿佛那只是金字塔尖那一小撮人的玩物。今天我们就从期货高频数据下手,去揭开神秘面纱的一角,并尝试搭建神经网络模型对高频数据进行预测,抛砖引玉,希望能让对金融数据分析,量化交易,人工智能感兴趣的朋友有所收获。我们已经将本文的全部源数据+源代码+python环境打包好,做到开箱即用, 文末有获取方式,欢迎大家下载自己动手继续学习和研究。

先看我们最终的模型结果,在训练集和测试集上的表现:

下面开始探索数据。

交易时间

以本文要研究的螺纹钢(RB)为例, 与股票不同,期货不仅在工作日白天交易,很多品种还有夜盘, 每个交易日就是从夜盘开始计算的。

更新时间:2023-04-10 09:17

chatgpt

编写线段树代码

更新时间:2023-02-10 06:37

分页第1页第2页第3页第4页第5页
{link}