本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2025-02-27 02:34
欢迎您来到BigQuant!
BigQuant是一个人工智能量化投资平台,平台内聚集了各类人工智能量化开发者、订阅者和学习者。
如果您是一位充满好奇心的学习者,在BigQuant您可以前往:
与知识经验丰富的讲师团队,通过线上+线下的方式,学习AI量化入门、因子构建分析、AI量化实践、实战等,纵观全局获得AI量化全貌,由浅入深进阶成为量化大神。 ![{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:1
更新时间:2025-02-27 02:34
市净率,简称PB,是衡量股票价格相对于公司净资产的比率。简单来说,它告诉我们投资者愿意为每单位净资产支付多少价格。
市净率计算公式为:市净率 = 股价 / 每股净资产
举个例子,你正在考虑购买一家书店,这家书店的净资产(包括书籍、家具等)价值10000元,现在卖家想要以15000元的价格出售。市净率(PB)就像是你在决定是否购买这家书店时,用来衡量价格是否合理的一个‘价值秤’。这个书店的市净率就是:PB = 15000元 / 10000元 = 1.5。这意味着,你愿意为书店每1元的净资产支付1.5元。
【市净率作用】市净率因子在量化投资中扮演着重要角色,它帮助我
更新时间:2024-12-16 02:45
累计收益率
**累计收益:概念与计算方式**
在投资领域,累计收益是衡量投资者整体回报的一个重要指标。它反映了某项投资在特定时间段内的总收益,通常以百分比形式表示。累计收益不仅考虑了初始投资的回报,还包括所有期间的收益累积,能够帮助投资者了解在一段时间内其投资的表现。
### **概念解析**
累计收益,也称为总收益,指的是投资从开始到结束这一整个期间内的总回报率。与单期收益不同,累计收益是随着时间的推移而逐步累积的。它包括了价格变化、股息分红、利息收入等因素,能够更全面地反映投资的总
更新时间:2024-11-21 07:55
策略全称
基于股息率的红利量化策略
策略绩效图
作者
大田
发布日期
2024-08-26
风险提示
*红利策略也叫高股息策略
更新时间:2024-09-02 11:02
小市值策略是一种经典的量化投资策略,旨在通过筛选市值较小的股票,并根据市值对股票进行排序,选取市值最小的一部分股票进行投资。这种策略基于小市值股票在某些市场条件下可能具有较高的增长潜力和投资回报率。
小市值策略的理论基础可以追溯到Fama-French三因素模型。该模型指出,除了市场风险外,股票的收益还与市值和账面市值比有关。具体来说,小市值股票通常具有更高的预期回报,因为小市值公司相对于大市值公司在市场上更容易被低估,从而在未来具有更大的增长潜力。此外,小市值公司通常具有较高的灵活性和创新能力,能够迅速适应市场变化和抓住新的商业机会,这进一步增强了其投
更新时间:2024-06-30 07:28
在量化投资领域,小市值股票和动量因子是两个广泛应用的选股指标。小市值股票因其相对较小的市值,更容易受到市场情绪和资金流入的影响,从而表现出高收益特性。而动量因子则反映了股票价格在一段时间内的趋势,具有延续性的特点。本文结合这两个因子,构建一个针对全A股市场的量化策略,旨在通过选择具有高动量的小市值股票来实现最大化的年化收益率。
小市值股票和动量因子在量化投资中具有重要地位。小市值股票通常具备高成长潜力,能在短期内带来显著收益。动量因子则是基于“强者恒强,弱者恒弱”的市场动量效应,追踪价格上涨或下跌的趋势。结合这两个因子可以捕捉市场中的高收益机会。小市值股
更新时间:2024-06-27 10:25
全A股市场的量化投资策略在近年来受到越来越多投资者的关注。此次我们介绍的策略主要依赖小市值因子和动量因子进行股票选择,以期在不进行风险控制的情况下最大化年化收益率。小市值因子(Small Size Factor)和动量因子(Momentum Factor)是量化投资中常用的两个因子。
小市值因子基于“规模效应假说”,认为小市值股票往往具有更高的收益潜力,因为它们的增长空间较大且往往被市场低估。动量因子则基于“惯性效应假说”,认为过去表现好的股票在未来一段时间内仍有可能继续表现优异。这两个因子的结合可以在一定程度上兼顾成长性与市场趋势,形成一个较为稳健的投资组合。
然而,这
更新时间:2024-06-25 09:47
量化投资领域中,因子模型是非常重要的一类策略。因子投资策略通过提取市场中的某些特征(如价值、动量、规模等),并以此来构建投资组合。本文介绍的策略主要采用了小市值因子和动量因子,目的是在全A股市场中最大化年化收益率。
小市值因子(Size Factor)指的是选取市值较小的股票进行投资。根据“规模效应”理论,市值较小的股票往往能够获得较高的收益率。动量因子(Momentum Factor)则是选取价格上升趋势明显的股票进行投资。动量策略的理论基础是“惯性效应”,即股票价格在一段时间内的走势会继续保持。
这两个因子的结合可以捕捉到市场中的不同特征,从而提高策略的收益。需要注意
更新时间:2024-06-25 09:38
量化投资策略通过数学和统计方法,从历史数据中提取出有用的信息,指导投资决策。今天我们要介绍的是一个基于小市值因子和动量因子的全A股量化策略。该策略通过选择市值较小且动量较高的股票,力图在不进行额外风险控制的情况下,实现高年化收益。
小市值因子,即市值较小的股票往往具有较高的预期收益,这是因为小市值股票通常具有较高的成长性,但也伴随着较高的风险。动量因子,是指股票的价格具有惯性,即过去表现好的股票在未来一段时间内仍然可能表现较好。在实际操作中,动量因子常通过一定期间内的价格变化率来衡量。
该策略的优点在于通过组合小市值因子和动量因子,能够捕捉到市场中的高成长
更新时间:2024-06-25 09:36
1989年发表的论文《The Fundamental Law of Active Management》及其随后的相关论文揭示了寻求主动投资的alpha
收益的数量化关系,这为主动组合投资管理带来一套令人信服的分析框架,这个数量化关系很好揭示了数量化技术(量化投资)可以如何或者应该如何切入投资管理领域。
和被动组合管理(passive porfolio management)相比,主动组合管理(active porfolio management)更显投资水平的能力,或者说运气。被动投资力求完全复制相应的基准成分股及其权重,所以每当某指数做成分股的调整时,新入选的股票
更新时间:2024-06-12 02:56
人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。
机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|
更新时间:2024-06-11 03:20
更新时间:2024-06-07 10:55
本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb
利用市场信息进行量化投资主要涉及以下步骤:
更新时间:2024-06-07 10:55
如何获取策略模拟资金曲线信息 ,再反向输出集成策略?
https://www.bilibili.com/video/BV1wR4y1C7ZT/?vd_source=ecd29bbd04cbefdfa426167c55241973
[https://bigquant.com/experimentshare/b8a38c78cb844ac3bc3821e42497ff5
更新时间:2024-06-07 10:55
\
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
【旧版使用说明】此文档为旧版本,相关文档可参考:
https://bigquant.com/wiki/doc/126-KkS3pYVIAH
20210624 Meetup 策略案例
https://bigquant.com/experimentshare/f235e9ce26dc42b9ae9fb57ca6574bf1
\
更新时间:2024-06-07 10:55
国泰君安alpha191中的count、regbeta、regresi三个函数怎么定义?
https://www.bilibili.com/video/BV1ov4y1Z7Yg?p=2&share_source=copy_web
\
# 国泰君安 Count(a, n),过去5天close_0 > close_1 的天数
conditions = where(close_0
更新时间:2024-06-07 10:55
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版因子分析代码:
https://bigquant.com/wiki/doc/5zug5a2q5yig5p6q5luj56cb-Od7rjBTNDQ
[https://bigquant
更新时间:2024-06-07 10:55