更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
现在先说说证券行情吧。
1。国外的股票行情我就不谈了,这个我不是很了解,今天我来说说国内两大证券交易所,上交所和深交所两大交易所。
上交所的L1和深交所的L1行情,狭义的说就是五档行情,还是比较好获取,渠道很多,但是质量参差不齐。我说说质量稍微好点的,野路子无限断、无限延迟行情,我就不谈了。
首先,最好L2行情数据接口的肯定是从交易所购买,交易所每年30万或35万,从交易所购买这个市场,一般用于量化分析交易或追板的,而是用于市场展示软件公司,一般交易会购买L2行情数据,前面的文章已经提到过。交易所的官方网站上有很多这样的公司,我记得在2016年之前,这样的软件公司并不多,现在,无数,
更新时间:2022-11-18 08:17
游凛峰先生,21年证券从业经历,多年海外投研经验,2009年加入工银瑞信基金,目前负责公司量化投资。深耕基本面量化投资多年,通过主动选行业+多因子量化选股,探索具有潜力的细分行业中的优质股票,注重自由现金流和盈利质量的匹配程度,实现“盈利稳定+最大化”。目前整体偏均衡成长风格,偏好配置持续高增长的行业,获取行业配置收益;个股盈利质量高,自由现金流等指标表现较优,长期业绩表现优秀。
基金经理:游凛峰先生,21年证券从业经历,2009年加入工银瑞信基金,目前负责公司量化投资,在管基金共7只,总管理规模约33.5亿元。海外投研经验丰富,深耕基本面量化投资多年,历史业绩表现优秀。
!
更新时间:2022-11-02 09:32
近年来,量化投资在国内发展迅速,一批量化私募机构管理规模破百亿,少数头部破千亿,而且相当一部分量化私募在过往一年多时间取得不错的收益。
投资者在享有量化投资收益机会的同时,也在保持清醒的认识,量化投资也存在风险,能否取得超额收益关键仍在在核心团队,与团队建设、IT建设和团队积累的研究框架等密不可分。
1.投资范围更加广泛 量化投资借助计算机技术,搜集的信息更具有速度和广度,投资分析的范围覆盖面更广,基本可达整个市场。同时,量化投资可以针对全市场范围的品种,多角度分析且实现选择,促进交易者获得更多投资机会。
2.程序化交易,避免人为主观因素的影响 量化投资通过回测来证实或者证伪策略的历
更新时间:2022-10-19 03:22
Citadel纪录片分享!House of Ken Griffin – The Story of Citadel!了解Ken Griffin是如何把Citadel打造成为300亿美元对冲基金!
https://www.bilibili.com/video/BV1ot4y1j74y
Citadel城堡投资集团 肯·格里芬 在大卫·鲁宾斯坦访谈 The David Rubenstein Show - Citadel's
更新时间:2022-10-10 13:02
因诺资产徐书楠有关量化的解读-人工智能的深度运用,国内量化投资会有更长足的发展,资产配置应基于长期考量,短期表现偏随机性
https://www.bilibili.com/video/BV14B4y197bP
\
更新时间:2022-10-10 10:09
人工智能投资时代到来了吗?未来基金的将没有投资经理。幻方量化CEO陆政哲介绍幻方人工智能量化投资实践:什么是人工智能,人工智能的发展与应用,当前人工智能投资的实践案例,幻方在人工智能投资上的发展和人工智能投资的挑战与未来。
https://www.bilibili.com/video/BV1zD4y1Q7Un
幻方量化CEO陆政哲先生认为量化投资机构在发展历程上,会面临周期性的巨大考验,一方面是自身规模的增长给业绩带来的压力,
更新时间:2022-10-10 09:27
https://www.bilibili.com/video/BV1Ve4y1Y7NX
九坤郭泓辰:现在随着整个计算机科学的发展,包括算力的提高,现在量化投资能做的事情有很多,大家可以大量的应用数据和统计,对数据进行分析,建立各种的假设,并且验证自己的想法,最终就形成这样一个投资的流派。就是依靠计算机建模去把市场的投资逻辑进行梳理,最终形成一个长期可以在市场上盈利的结果,做成这样一个投资流派。
[https://www.bilibi
更新时间:2022-10-10 09:19
gcForest算法
gcForest(multi-Grained Cascade Forest)算法是2017年周志华教授提出来的一种基于树的深度模型,旨在作为深度神经网络的一种可供选择的替换。由于超参数更好的鲁棒性,小样本上更好的稳定性,因此该模型相对于神经网络可能在金融数据上有更好的表现。
gcForest的回测表现
将《机器学习与量化投资:避不开的那些事(1)》中的神经网络替换成为gcForest,按月收益回撤比可达15.959。
gcForest的参数敏感性
该模型的各个参数的敏感性都非常低。
[/wiki/static
更新时间:2022-10-10 01:40
参考 https://wesmckinney.com/book/ 编写 Python For Quants - 用于量化投资的Python
更新时间:2022-10-10 01:02
2010至2020,偏股混基整体表现如何
从整体年化收益来看,过去10年偏股混基的整体表现显著优于沪深300和中证500,略优于创业板指。分年来看偏股混基并不是靠始终保持成长风格才取得与创业板指相当的收益率,2011年、2016年至2018年,当市场风格偏向价值板块时,偏股混合型基金与沪深300指数收益率相当,好于中证500和创业板指;2013年、2015年、2019年至今,当市场风格偏向成长板块时,偏股混合型基金与中证500相当(在极端成长行情下往往跑输创业板指)
从基金排名的角度来看,如果一只基金产品能够取得和偏股混基指数相当的收益率,其排名大致在前50%左右;要
更新时间:2022-10-09 10:42
投资要点
西学东渐,是指从明朝末年到近代,西方学术思想向中国传播的历史过程。西学东渐不仅推动了中国在科学技术和思想文化方面的发展,也有力地促进了社会与政治的大变革。在今天,西学东渐仍有其重要的现实意义。作为A股市场上以量化投资为研究方向的卖方金融工程团队,在平日的工作中,常常深感海外相关领域的研究水平之高、内容之新。而这也促使我们通过大量的材料阅读,去粗取精,将认为最有价值的海外文献呈现在您的面前
股票市场的收益预测是投资者非常关注但是一直没有得到完美解决的问题。本文将股票市场的收益率分解为三个部分:股息率、利润增长率和市盈率增长率,作者利用其不同的时间序列特征并通过
更新时间:2022-09-21 07:50
深度了解易方达量化投资团队,大咖解读量化投资趋势与方法
https://www.bilibili.com/video/BV1te4y187ig
\
更新时间:2022-09-16 16:56
目前,深度强化学习(DRL)技术在游戏等领域已经取得了巨大的成功,同时在量化投资中的也取得了突破性进展,为了训练一个实用的DRL 交易agent,决定在哪里交易,以什么价格交易以及交易的数量,这是一个具有挑战性的问题,那么强化学习到底如何与量化交易进行结合呢?下图是一张强化学习在量化交易中的建模图:
不断积累,这其中就包括许多对投资有用的信息。
互联网舆情数据可预测性分析相较于传统的金融数据,互联网舆情数据可以及时地描述投资者的情绪面。众多数据源中,舆情搜索指数反映了众多投资者对某类信息的关注情况,本文将众多投资者对大小盘的舆情搜索情绪作为投资者情绪的直接代理变量,以此来研究大小盘风格轮动与舆情变化的强弱之间的关系。投资者情绪随着大小盘风格的变化而波动,同
更新时间:2022-08-31 07:24
1.1.人工智能正当时1956年,人工智能(ArtificialIntelligence,AI)的概念在计算机达特茅斯会议上被提出。AI赋予机器像人一样思考,并做出反应的能力。它的本质是通过研究人类活动的规律,构造具有一定智能的人工系统来模拟人类的某些思维过程和智能行为,去完成以往需要人的智力才能胜任的工作。
如今,大数据、GPU和复杂算法的出现与进步,大大加速了人工智能的发展。2016年,由DeepMind开发的AlphaGo以4:1战胜了韩国棋手李世石,让人工智能备受关注,掀起了人工智能的浪潮。这一新兴学科凭借其广阔的发展前景吸引了众多研究者,目前已经在计算机视觉、自然语
更新时间:2022-08-31 07:02
身处大数据时代,我们所面对的数据的维度在不断增加。传统的量化投资模型基于财务报表及市场价量信息构建因子,信息来源相似性较高导致模型趋同、交易拥堵。在互联网中,非传统金融数据(如舆情、搜索量、语文文本)不断积累,这其中就包括许多对投资有用的信息。
相较于传统的金融数据,互联网舆情数据可以及时地描述投资者的情绪面。众多数据源中,舆情搜索指数反映了众多投资者对某类信息的关注情况,本文将众多投资者对大小盘的舆情搜索情绪作为投资者情绪的直接代理变量,以此来研究大小盘风格轮动与舆情变化的强弱之间的关系。投资者情绪随着大
更新时间:2022-08-31 06:23
机器学习系列报告
本系列报告试图系统全面性的介绍各种不同的机器学习方法,并且结合具体的在投资研究领域应用实例、交易策略及code示例,说明其应用情景和实现方法。机器学习的方法可以分为以下几类:监督学习、无监督学习、深度学习及其他机器学习方法(例如强化学习),对应到具体的模型上数量则更是繁多,目前大部分机器学习模型并未广泛的应用在投研领域,因此本系列主要偏重于在投研领域有应用潜力的模型及方法。此篇将以介绍监督学习方法为主
监督学习模型之回归类模型及其应用
与普通线性回归不同,监督学习中的惩罚回归模型和非参数回归,可以分别用于处理输入变量中存在大量线性相关性关系
更新时间:2022-08-31 01:52
\
更新时间:2022-08-31 01:47
机器学习波动率预测
大多数量化策略的盈利与波动率高度相关。预知波动率对于分配每个策略的仓位至关重要。使用机器学习进行波动率预测较传统方法的预测效果有所提升。
机器学习策略判断失效的方法
判断机器学习策略失效有独特的方法,可以在击穿最大回撤前提前下线策略。
机器学习在量化投资中应用的杂谈
我们在这一章节中致力于打通实盘的各个环节,以及展开对机器学习对冲基金运营方式的探讨。
[/wiki/static/upload/3a/3af7bff5-f4fe-4eef-96df-74530303b737.pdf](/wiki/static/up
更新时间:2022-08-30 09:00
机器学习和人工智能在量化投资的应用有很长的历史
机器学习在九十年代初的热潮中已经被大量运用于量化投资中。尽管受限于当时的计算能力和算法,但是由于在算法交易和CTA等领域中机器学习提供了一些更好的解决方案,机器学习在这些领域的应用一直延续到今天
机器学习在量化投资中应用的九个思考
本报告是系列报告的第一篇,简略介绍了机器学习运用到二级市场投资过程中的一些常见问题。这些问题覆盖了策略研发常见错误,策略归因,策略失效判断,机器学习平台的建立,交易系统和机器学习平台的对接以及机器学习对冲基金的团队架构。后续系列报告将会详细围绕这些问题展开
**适当使用下的机器学习
更新时间:2022-08-30 09:00
机器学习容易给人“黑箱模型”和“过拟合”的印象,但事实上一些机器学习算法的逻辑和结果都非常直白,而且算法自身带有一套避免过拟合的参数估计机制。众多的实践研究说明,机器学习方法的预测能力大部分情况下都强于线性模型,很值得在量化投资中测试使用。本报告主要讲述机器学习的基本原理和用其来做量化选股的实证结果。
机器学习模型众多,不存在所谓的最强模型,不同的数据,不同的问题适用不同的模型。我们测试了LASSO、SVM、增强型决策树、随机森林等几种常见机器学习方法,最终选择用随机森林,主要是因为它结构简单、参数少、过拟合概率低,同时还具有非常强的样本外预测能力。机器选股模型省
更新时间:2022-08-30 02:27