1958 年感知机的诞生以及1986 年反向传播算法的出现,为深度学习奠定了基础。
1989 年,卷积神经网络(CNN)首次被提出,共用卷积核的方式很大程度上减少了模型中需要被训练的参数,在图像识别等方面有更好表现。
2000 年,一类非常重要的循环神经网络(RNN),长短期记忆神经网络(LSTM)被提出,在一定程度上缓解了梯度消失和梯度爆炸等问题。
2009 年,深度信念网络(DBN)与深度玻尔兹曼机(DBM)先后被提出,其中 DBM是多个受限玻尔兹曼机(RBM)相连构成的无向图,而 DBN 是在最远离可视层处为 RBM,其余层为贝叶斯信念网络的混合模型。
同年,图神经网络(GNN)
更新时间:2022-09-29 03:27
2022世界人工智能大会于2022年9月1日至3日在上海举办。世界人工智能大会自2018年以来,已成功举办四届。2022世界人工智能大会由国家发展和改革委员会、科学技术部、工业和信息化部、国家互联网信息办公室、中国科学院、中国工程院和上海市人民政府共同主办。
作为本届世界人工智能大会承办单位之一,数库科技于9月3日下午举办以“数无疆·智无界”主题分论坛,J.P. Morgan亚太地区量化策略负责人Robert Smith先生发表了题为*《Big Data and AI Strategies:AI for Investing》*的主题演讲,Robert Smith分别
更新时间:2022-09-19 03:58
机器学习作为发展中的学科,毕业后的从业人员年薪非常可观,平均年薪达到了144721美金。
一些头部公司的薪水大方到让人羡慕,ebay甚至能出到接近35万美金的年薪。在圣地亚哥市,机器学习工程师的平均年薪则在156376美金左右。
有网友说,接触机器学习,深度学习和计算机视觉已经一年有余,从小白逐渐到了有了一定知识和经验积累的学习者。目前的任务是通过深度学习训练神经网络以使其能对特定植物的进行切割,需要兼顾准确率和速度。植物的形态确实比一般物体复杂,很具有挑战性。
竞赛实战,可以让参与者更深刻体会ML的一些关键步骤,从工业视角去理解,例如了解度量优化——每个问题都有其独特的评估指标。如何在
更新时间:2022-09-13 00:34
更新时间:2022-08-31 09:37
更新时间:2022-08-31 08:06
互联网大数据与量化投资身处大数据时代,我们所面对的数据的维度在不断增加。传统的量化投资模型基于财务报表及市场价量信息构建因子,信息来源相似性较高导致模型趋同、交易拥堵。在互联网中,非传统金融数据(如舆情、搜索量、语文文本)不断积累,这其中就包括许多对投资有用的信息。
互联网舆情数据可预测性分析相较于传统的金融数据,互联网舆情数据可以及时地描述投资者的情绪面。众多数据源中,舆情搜索指数反映了众多投资者对某类信息的关注情况,本文将众多投资者对大小盘的舆情搜索情绪作为投资者情绪的直接代理变量,以此来研究大小盘风格轮动与舆情变化的强弱之间的关系。投资者情绪随着大小盘风格的变化而波动,同
更新时间:2022-08-31 07:24
公众号遴选了各大期刊前沿论文,按照理解和提炼的方式为读者呈现每篇论文最精华的部分。QIML希望大家能够读到可以成长的量化文章,愿与你共同进步!
本期遴选论文 标题:FactorVAE: A Probabilistic Dynamic Factor Model Based on Variational Autoencoder for Predicting Cross-sectional Stock Returns
更新时间:2022-08-31 06:22
深度学习介绍及应用案例
本篇报告将焦点放在深度学习上,介绍了深度学习的常用算法和在金融领域上可以运用的场景,并给出了两个具体的案例。
监督类方法介绍
监督的深度学习算法基于神经网络结构,这种系统一般由多个层堆叠组成特定神经网络,不同算法的差别来自层的组成结构及层与层之间的关系。深度神经网络在普通神经网络的基础上,增加隐含层的数量,学习输入与输出之间的非线性关系。循环神经网络随数据的输入生成动态模型,以捕捉之前的输出和当前输出的关系,并衍生出了如LSTM的结构,解决遗忘较长时间信息的问题。卷积神经网络主要通过卷积和池化的方式连接每层的输入和输出,达到降低数据维
更新时间:2022-08-31 01:53
机器学习系列报告
本系列报告试图系统全面性的介绍各种不同的机器学习方法,并且结合具体的在投资研究领域应用实例、交易策略及code示例,说明其应用情景和实现方法。机器学习的方法可以分为以下几类:监督学习、无监督学习、深度学习及其他机器学习方法(例如强化学习),对应到具体的模型上数量则更是繁多,目前大部分机器学习模型并未广泛的应用在投研领域,因此本系列主要偏重于在投研领域有应用潜力的模型及方法。此篇将以介绍监督学习方法为主
监督学习模型之回归类模型及其应用
与普通线性回归不同,监督学习中的惩罚回归模型和非参数回归,可以分别用于处理输入变量中存在大量线性相关性关系
更新时间:2022-08-31 01:52
\
本教程旨在介绍如何使用TensorFlow以及LSTM神经网络进行深度学习(了解更多机器学习请参见教程
@ML@ML
)。本教程的演示方法为:以实数序列的预测模型为例进行论述,并对股票价格或股指指数进行实测。
本教程将使用神经网络作为序列数据的预测模型。接下来我们介绍什么是序列数据。
vv为一有限实数序列,即v=(v1,...,vM)v=(v1,...,vM),其中∀i=1,...,M∀i=1,...,M,vi∈Rvi∈R为实数,MM为一非负整数,亦即vv是一包含MM个元素的实向量(若M=0M=0
更新时间:2022-07-29 05:57
本文主要介绍了python基础、爬虫、与数据库交互、调用机器学习、深度学习、NLP等。分别介绍了各个模块的安装,环境的搭建等。并且以机器学习选股为例,把各个模块连贯起来,核心代码基本都有详尽的解释。
大数据AI时代,python无往不胜的包装能力、可组合性、可嵌入性都很好,可以把各种复杂性包装在Python模块里,非常友好的供调用。Python资源丰富,深度学习如keras,机器学习如sk-learn,科学计算如numpy、,自然语言处理如jieba等。Python将极大提高工作效率无论是科学计算,还是图形界面显示;无论是机器学习还是深度学习;无论是操作e
更新时间:2022-07-29 05:23
随着深度学习技术的进步,人工智能领域迎来了最好的发展机遇。近年来,国内外知名的IT公司纷纷在人工智能上发力,创造了一系列突破性成果。同时,海外的对冲基金和投资银行也开始在人工智能上进行布局。高盛、BlackRock、Citadel等公司是投资领域人工智能的先行者。
人工智能能够帮助不同类别的资管机构提高竞争力,在未来的市场竞争中占得先机。分部门来看,人工智能正在或者即将对资管机构的投资、研究、交易、风险管理、产品设计、营销等细分部门产生深远的影响。
投资上,依托高效的信息处理和知识挖掘能力,人工智
更新时间:2022-07-29 04:42
对冲基金布局人工智能随着深度学习技术的进步,人工智能领域迎来了最好的发展机遇。近年来,国内外知名的IT公司纷纷在人工智能上发力,创造了一系列突破性成果。同时,海外的对冲基金和投资银行也开始在人工智能上进行布局。高盛、BlackRock、Citadel等公司是投资领域人工智能的先行者。
人工智能在资产管理的不同领域大展身手人工智能能够帮助不同类别的资管机构提高竞争力,在未来的市场竞争中占得先机。分部门来看,人工智能正在或者即将对资管机构的投资、研究、交易、风险管理、产品设计、营销等细分部门产生深远的影响。 投资上,依托高效的信息处理和知识挖掘能力,人工智能能够提高对冲基金的投资表
更新时间:2022-07-29 04:41
因子投资模型增强:基于深度学习来预测基本面数据经过回测发现,如果能够预知未来的基本面数据并构建组合,则能够大幅跑赢传统方式构建的组合。并且,基本面数据之间的关系可能比基本面数据与价格之间的关系具有更高的信噪比。因此,作者根据过去5年的基本面数据训练一个深度神经网络来预测未来的基本面数据,结果表明较之于简单预测(假设未来数据和当前数据一致)模型,神经网络模型在MSE、年化收益、夏普比率等指标都有明显的提升。
消费者的眼睛是雪亮的:消费者评价的投资价值本文探究了消费者的评价是否包含着对投资有价值的信息。利用上买家对产品的评价信息,发现消费者的评价对于选股具有一定的价值。
通过做多异
更新时间:2022-07-27 10:34
基于17个短期因子,其中8个量价因子,9个均线因子。训练集使用2005-01-04至2020-06-01日,每个交易日买入模型当日预测结果排名靠前的1只A股股票,次日卖出。
原有模型是基于BQ提供的Stockranker机器学习算法:
![图 1:stockranker-2021年1月4日至2022年1月21日的模拟实盘结果{w:100}{w:100}{w:100}{w:100}](/wiki/api/attachments.redirect?id=bb5b3d09-3e20-4840-b5e0-2220d7f5599
更新时间:2022-06-22 05:47
2022-04-26 | 作者:微软亚洲研究院
编者按:ICLR(International Conference on Learning Representations)是国际公认的深度学习领域顶级会议之一,众多在人工智能、统计和数据科学领域以及计算机视觉、语音识别、文本理解等重要应用领域极其有影响力的论文都发表在该大会上。今年的 ICLR 大会于4月25日至29日在线上举办。本届大会共接收论文1095篇,论文接收率32.3%。今天,我们精选了其中的六篇来为大家进行简要介绍,其中研究主题的关键词包括时间序列、策略优化、解耦表示学习、采样方法、强化学习等。欢迎感兴趣的读者阅读论文原文,一
更新时间:2022-05-23 06:40
更新时间:2022-05-22 01:17
\
更新时间:2022-05-17 02:56
导语
在阅读了 深度学习的简要介绍后,本文将介绍深度学习CNN模型及其在量化投资领域中的应用。
机器学习作为人工智能的核心,其传统算法在解决很多问题上都表现出了高效性。随着近些年数据处理技术上的进步和计算能力的提升,深度学习得以在很多问题上也大放光彩,成为近一段时间互联网、金融等领域的大热门。
在量化投资领域,机器学习尤其是由统计学延伸的各种算法一直以来都被尝试应用在选股、择时等策略的开发上,随着深度学习在其他领域上的突破,其在自动化交易甚至投资策略的自开发自学习方面的应用成为了大家探索的焦点。
更新时间:2022-05-12 13:58
**关子敬:**在我看来海内外最主要的差别是:国内投资人是偏向喜欢直接对股价做预测,而海外直接预估股价比较少,主要做填充模型(imputation model),针对遗失数据做估算,特别是在
更新时间:2022-04-27 01:48
\
更新时间:2022-04-18 02:07
更新时间:2022-04-11 11:00
《alphanet GNN和GAN华泰金工深度学习量化研究》Deep Alpha 研讨会 small_q small_q 更新于 大约 1 个月前 · 阅读 785
#1、华泰人工智能系列研究:四年五主题四十七篇研究 首先非常感谢宽邦科技的邀请,这里我替换了一下标题,主办方给的题目是《国内投资机构深度学习量化实践》,我这里改成了《华泰金工深度学习量化研究》,因为我个人很难代表整个国内的投资机构,国内的买方和卖方,公募和私募研究差异还是挺大的。 总体来讲,买方机构会更务实,目标明确。卖方研究有特殊之处,市场对我们的期待是探索前沿内容,帮大家踩坑,所以需要我们仰望星空。但同时又不能太飘,也需
更新时间:2022-03-22 02:22
Modeling the Momentum Spillover Effect for Stock Prediction via Attribute-Driven Graph Attention Networks
Rui Cheng, Qing Li
在金融领域,上市公司的动量溢出效应是公认的。只有少数研究预测了一家公司在其相关公司方面的趋势。试点工作的一个常见策略是采用具有一些预定义牢固关系的图卷积网络 (GCN)。然而,动量溢出是通过各种公司关系传播的,其中的桥梁重要性随时间而变化。限制几个预定义的关系不可避免地会产生噪音,从而误导股票预
更新时间:2021-12-28 02:47
End-to-End Risk Budgeting Portfolio Optimization with Neural Networks
A. Sinem Uysal, Xiaoyue Li , and John M. Mulvey
2021年7月9日
投资组合优化一直是金融领域的核心问题,经常与两个步骤:校准参数,然后解决优化问题。然而,两步过程有时会遇到“误差最大化”问题,其中参数估计的不准确转化为不明智的分配决策。在这论文中,我们将预测和优化任务结合在一个单一的前馈神经网络中网络并实施端到端的方法,在那里我们学习
更新时间:2021-12-28 02:40