算法交易

算法交易是金融领域的技术革新,它利用高级数学模型和复杂算法来快速、准确地分析和解读市场动态,以制定并执行交易策略。这些算法能够在毫秒级别内对市场数据做出反应,远超人脑的处理速度。算法交易为金融行业提供了一个精细控制风险的途径。包括定点交易、套利交易和趋势跟踪等多元化策略的应用,有效提高了交易的准确性和效率。其背后的智能化系统可24小时不间断地监控市场,捕捉交易机会,大大减轻了人工作业负担,同时,极大地提升了在多变金融市场中的适应能力和盈利能力。更重要的是,由于大部分决策基于预定规则和数据模型,算法交易显著降低了情绪化决策的风险。然而,也需注意到,过度依赖算法可能导致失去对市场直觉的把握,并且在极端市场情况下,算法可能失效,导致不可预见的风险。总体而言,算法交易以其快速、精准和高效的特性,逐渐成为现代金融市场的核心竞争力。

日线策略信号进行日内择时

【旧版使用说明】此文档为旧版本,相关文档可参考:

https://bigquant.com/wiki/doc/126-KkS3pYVIAH

20210624 Meetup 策略案例

https://bigquant.com/experimentshare/f235e9ce26dc42b9ae9fb57ca6574bf1

\

更新时间:2024-06-07 10:55

策略思想和因子哪个更重要

问题

策略思想和因子哪个更重要

视频

https://www.bilibili.com/video/BV15b4y1s7w7/

策略源码

文档及源码:策略思想和因子哪个更重要

更新时间:2024-06-07 10:55

基于遗传算法挖掘股票因子

{{membership}}

https://bigquant.com/codeshare/9aa6342b-2c67-4417-afea-0d5874e5d340

\

更新时间:2024-06-07 10:55

自定义模块的使用方法

视频讲解

查看视频

策略源码

https://bigquant.com/codeshare/44ce0baf-6d4c-4f9c-9b7b-90ea4b12ab19

\

更新时间:2024-06-07 10:55

高频回测模块择时策略

问题

高频回测模块择时策略

\

视频

https://www.bilibili.com/video/BV1S44y1y7dc?p=2&share_source=copy_web

策略源码

8月19日Meetup策略模板:

[https://bigquant.com/experimentshare/a6bae485ffcc47819510b788ddfad338](https://bigquant.com/experime

更新时间:2024-06-07 10:55

53rd Meetup

\

更新时间:2024-06-07 10:55

49th Meetup

Q1-@james:有什么另类的标注可以推荐下?

https://bigquant.com/wiki/doc/-0kcMgSnQXw

https://bigquant.com/wiki/doc/rengongzhineng-xilie-ershijiu-shouyi-linglei-biaoqian-zhengquan-fuben-xRMNFmmg00

{w:100}{w:100}{w:100}

更新时间:2024-06-07 10:55

“标记买卖点”代码复习

问题

知识库的策略分析里面有个“标记买卖点”的代码,能不能请老师把这个代码讲解一下,方面以后分析其它策略的时候使用。链接在这里:标记买卖点

\

视频

https://www.bilibili.com/video/BV1554y1f7Rf/

策略源码

[https://bigquant.com/experimentshare/1f66fd8421044f2a9884c9f1d3614ce1](ht

更新时间:2024-06-07 10:55

59th Meetup

本期提问者:bq22fw19、bq61ym2n、1855680***、bqhz06vb

因子挖掘

如何利用市场信息?

利用市场信息进行量化投资主要涉及以下步骤:

  1. 数据收集:首先,需要收集和整理市场数据,包括股票价格、交易量、基本面数据、新闻、宏观经济数据等。这些信息可以从各种数据供应商或公开数据源获取。
  2. 数据预处理:对收集到的数据进行清洗和预处理,处理缺失值、异常值、重复值等,保证数据的准确性和完整性。
  3. 特征工程:根据投资策略和模型需求,进行特征工程,提取有价值的特征和信号。
  4. 模型构建:选择合适的模型(如回归模型、机器学习模型、深度学习模型

更新时间:2024-06-07 10:55

回测引擎常用功能示例

{{membership}}

https://bigquant.com/codeshare/ccb0fdad-c4da-424e-ace1-dd57ace94cec

\

更新时间:2024-06-07 10:55

AI量化交易常识

分享一些量化交易相关的常识信息。

五因子模型公式及应用

五因子模型是哪五个因子

**[多因子选股模型及优缺点](https://bigquant.com/wiki/doc/5asa5zug5a2q6ycj6ikh5qih5z6l5zcn6kn6ke

更新时间:2024-06-07 10:48

散户如何做量化交易

量化交易是利用数学模型和算法交易的方法,依赖于精确的数学模型和计算机算法来分析市场数据,并在合适的时机进行买卖。

对于散户来说可以通过自动化量化分析及交易减少人为情绪对交易决策的影响。

通过BigQuant量化平台系统可以分析大量历史市场数据,提升投资抉择效率,还可以使用多种组合量化因子降低投资风险。


散户在选择量化交易平台时,需要考虑选择知名度高、安全性好的平台,以确保平台的声誉和可靠性。

同时,平台

更新时间:2024-06-07 10:48

量化方法是什么意思?具体有哪些方法

量化投资是指使用数学模型、统计分析和计算机算法来指导投资决策的方法。

这种方法试图通过消除人为情感和直觉的影响,以客观和系统的方式分析市场和价值。


量化方法通常涉及以下几个方面:

  1. 数学模型与统计分析:量化投资的核心在于运用精密的数学模型和统计分析,精准识别市场脉络、估算资产内在价值以及全面评估潜在风险。这些模型囊括了时间序列分析、回归分析、因子模型等多种高级统计工具。
  2. 算法交易技术:量化投资者

更新时间:2024-06-07 10:48

听海外高频交易专家讲解美国的高频交易-海通证券-20190611

摘要

高频交易在美国证券市场中的角色

如果把正在正常交易、买卖力量均衡的市场比喻成一个平静的水面,此时,某个基本面交易员下了一个数量较大的订单,这好比往水中投入了一块石头。那么,不论是订单自身的价格推动力,还是其他投资者做出的反应,都会使市场产生一系列波动,一如水面泛起的层层涟漪。而高频交易则藏匿于其中,于市场的起伏之中寻找获利的机会。

在美国,上市和交易业务是完全分离的

所有的上市证券均可以在任何一家交易所交易。对高频交易商而言,这种碎片化的交易模式提供了很大的获利机会。试想,同一个证券很有可能因为市场流动性或是参与者结构的差异,甚至只是信息传递存在时滞,在不同

更新时间:2024-05-23 06:11

策略中调用其他因子_AI

策略案例

https://bigquant.com/experimentshare/5cfd9186208047518a995e4394ba1099

\

更新时间:2024-05-21 08:15

小市值策略源码

{{membership}}

https://bigquant.com/codeshare/ffad41f4-0b34-4997-9702-5b7753950675

\

更新时间:2024-05-20 07:35

多层感知器回归模型案例


本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

[https://bigquant.com/experimentshare/42bf93884b1246ad83c2874f06765732](https://bigquant.com/experimentshare/42bf93884b12

更新时间:2024-05-20 06:39

强化学习在金融市场中的应用(上)

本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

[https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7c588b8d](https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7

更新时间:2024-05-20 06:33

lightgbm多因子选股

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

[ht

更新时间:2024-05-20 06:21

Python基础入门


\

更新时间:2024-05-20 02:30

什么是量化投资?

导语

了解量化投资是成为宽客道路上的一块重要的敲门砖。本文从量化投资定义、量化投资特点、量化投资优势及量化投资实践流程四方面简要为大家介绍量化投资相关知识。

什么是量化投资?

量化投资是指通过数量化模型建立科学投资体系,以获取稳定收益。 在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。在国内,量化投资不再是一个陌生的词汇,近几年得到了迅猛的发展。

提起量化投资,就不得不提量化投资的标杆——华尔街传奇人物詹姆斯·西蒙斯(James Simons)。视频地址:“[横扫华尔街的数学家](https://bigquant.c

更新时间:2024-05-20 02:24

用线性随机梯度下降-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 02:15

算法交易的主要类型与策略分析

前言

算法交易起源于上世纪中叶的配对交易

历史上最早使用算法交易的例子可以追溯到1949年。对冲基金之父阿尔弗雷德·琼斯,利用空对多3:7的比例进行配对交易,在1955年到1964年间,综合回报率高达28%。到了上世纪60年代早期,投资者开始利用计算机通过分析股票的周线和月线来预测价格运动方向。

配对交易逐渐成熟,发展成后来的算法交易。随后算法交易策略慢慢在华尔街流传开来并被广泛使用,同时也带来了非常可观的盈利。原来在摩根士丹利从事配对交易的研究员,后来逐渐成为如大卫·肖、詹姆斯·西蒙斯这类明星基金经理手下的精英,算法交易的“黑盒子”便由此诞生。

随着计算机的广泛普及,华尔街各大

更新时间:2024-05-20 02:09

利用机器学习对冲风险

https://bigquant.com/experimentshare/d50ee96c36f84af6ad990409294db4cb

\

更新时间:2024-05-20 02:09

神经网络交易算法

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

https://bigquant.com/experimentshare/723e10568f294571924b89f3953ce20b

\

更新时间:2024-05-20 01:02

分页第1页第2页第3页第4页第5页第6页第7页
{link}