算法交易

算法交易是金融领域的技术革新,它利用高级数学模型和复杂算法来快速、准确地分析和解读市场动态,以制定并执行交易策略。这些算法能够在毫秒级别内对市场数据做出反应,远超人脑的处理速度。算法交易为金融行业提供了一个精细控制风险的途径。包括定点交易、套利交易和趋势跟踪等多元化策略的应用,有效提高了交易的准确性和效率。其背后的智能化系统可24小时不间断地监控市场,捕捉交易机会,大大减轻了人工作业负担,同时,极大地提升了在多变金融市场中的适应能力和盈利能力。更重要的是,由于大部分决策基于预定规则和数据模型,算法交易显著降低了情绪化决策的风险。然而,也需注意到,过度依赖算法可能导致失去对市场直觉的把握,并且在极端市场情况下,算法可能失效,导致不可预见的风险。总体而言,算法交易以其快速、精准和高效的特性,逐渐成为现代金融市场的核心竞争力。

利用深度学习技术预测股票价格

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 10:28

基于协整的配对交易

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/5z65lqo5y2p5pw055qe6ywn5a55lqk5pit-6x1P1362eJ

策略案例

[https://bigquant.com/experimentshare/6b05d7bd134e420387acfa25c37b283f](https://bigquant.co

更新时间:2024-05-17 09:23

StockRanker选股+随机森林大盘风控

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 07:25

新手量化学习计划

这几年跟着别的老师学习价值投资,抱着实现自动交易的目的,误打误撞接触了量化这个领域,

发现这个领域的人的都是高人,自己按照价值投资的思路,每年能拿到百分之十左右的利润就很不错了,但量化领域里面的大神都在研究每年60-70%的收益,甚至一个月翻倍…

跟武侠小说里面的藏经阁一样,扫地僧随便丢一本秘籍给你你就能横扫江湖一大半的人了…

从别的平台看到机器学习很厉害,一直没招到入门的方法,编程也不懂,就一直找地方学习,最后来到了big quant,里面资料很多,天天拿到策略改个日期看看回测,学习效果不理想

伟人说过,实践出真知,

想在这里做个计划,一步步去实现自己的想法看看能做到什么程度,

更新时间:2023-12-29 11:31

DeepAlpha多股策略小试牛刀

作者:james_1

前言

虫神已经对DeepAlpha进行比较详细的实验:DeepAlpha实践报告

在这里我分享下DeepAlpha-DNN和CNN的对比:

DNN操作简单, 对算力要求高, 容易得到比较稳定且一致的结果。可能是我对DNN不熟悉, 对我来说, 效果相比传统的机器学习, 提升不是很大,比较难以改进。

小股票池实验

DNN实验结果

逻辑:每日买5股, 次日卖出, 总共持仓10股

为了节省算力, 我把模型进行了一些缩减,如下所示

更新时间:2023-07-05 13:58

申万宏源技术指标测试大全之十一—Bias

指标介绍

乖离率指标(Bias):

所需数据和参数:Bias(close,nDay,threshold )

指标伪码:

MAVAL:=MA(CLOSE,nDay);

BIAS:=100*(CLOSE-MAVAL)/MAVAL;

指标含义

/wiki/static/upload/21/210c8875-0828-4472-a65c-1ee21ec1bfec.pdf

\

更新时间:2023-06-13 06:53

BigQuant复现研报


\

更新时间:2023-06-13 06:50

Bigmodels模型库

BigQuant AI Platform deep learning models(BigQuant AI量化平台深度学习模型库)。

介绍

bigmodels是什么?

bigmodels是BigQuant AI量化平台的深度学习模型库,集成了AI量化研究过程中常用的深度学习模型。

为什么需要bigmodels?

我们用PyTorch封装了AI量化研究中常用的深度学习模型,包含DNN、1DCNN、LSTM和Transformer等,并持续更新。

平台用户可以用简单的方式调用经过大量实践检验的AI能力,赋能AI量化投资。

import toch
impo

更新时间:2023-05-22 06:21

量化择时


\

更新时间:2023-05-04 15:10

算法交易将成为未来市场最大影响因素

某机构调查发现,近年来,通过电子渠道进行的交易有所增加,所有资产类别的交易员都预计,这种上升趋势将在未来两年继续下去。 摩根大通的瓦克说,我们经历了两年多非常不寻常的疫情,在市场非常动荡的情况下,许多客户从办公室搬到家里,这对增加电子交易来说是一场完美风暴。 不过摩根大通的Wacker表示,人工智能和机器学习预计很快将超过移动技术,成为未来市场主要影响因素。 近年来,在动荡的市场中,算法交易已成为一种强有力的工具。算法交易的目的是: 1.通过分拆母单,拟合市场成交量分布,降低市场冲击成本; 2.隐藏下单意图,用特殊目的算法,有效保护交易意图,避免引起市场异动; 3.使用自动化算法交易策略,节约

更新时间:2023-01-09 06:17

模型

模型板块包含了AI算法模型,多因子模型等一些研究内容。

更新时间:2022-12-06 14:42

机器学习+择时+跟踪止损+技术分析

策略案例

https://bigquant.com/experimentshare/41ba8c41f99346a6872f3ecac3a50c80

\

更新时间:2022-11-20 03:34

利用新的列表排序学习法构建多空组合

Constructing Long-Short Stock Portfolio with A New Listwise Learn-to-Rank Algorithm

作者:Xin Zhang, et al.

出处:Quantitative Finance, 2021-07

摘要:随着机器学习的快速发展,因子策略在行业中得到越来越广泛的应用。在算法中输入多因子可以进行横截面收益预测,并进一步用于构建多空组合。大量现有研究使用排序学习法来预测股票排名,基于此,作者提出了一个新的列表排序学习损失函数来进一步强调排名的头部和尾部。本文的损失函数基于多空策略,具有内在的移位不变性,是对ListM

更新时间:2022-11-20 03:34

用传统框架测试机器学习-GBDT算法

策略案例

https://bigquant.com/experimentshare/44cc116a1dad4c37983b9be35da208ee

\

更新时间:2022-11-20 03:34

分享一个可视化深度学习建模的例子

策略案例

https://bigquant.com/experimentshare/9426627188af4f488644532c01328c14

\

更新时间:2022-11-20 03:34

DeepAlpha-DNN应用实践报告

本集合里将分享平台开发者们对DeepAlpha系列的实践研究报告

\

更新时间:2022-11-08 08:26

优秀开发者分享


\

更新时间:2022-11-03 08:32

G-Research:ICML 2022论文推荐

摘要

G-Resarch作为ICML 2022的钻石赞助商,其研究人员和工程师参加了今年在美国巴尔的摩举行的会议。研究人员收集了他们最喜欢的2022年ICML论文并推荐给大家。

首先是来自机器学习工程师Casey Haaland的推荐,我们可以发现,机器学习工程师关注的论文更偏模型的结构及训练方法优化。

1. Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model Classes and Cone Decompositions

**Fast Convex Optimizat

更新时间:2022-10-11 02:31

文艺复兴-美国量化私募

交易策略揭秘

Renaissance Technologies文艺复兴科技公司交易策略揭秘记录!该短片中详细介绍了文艺复兴科技公司多年来如何开发各种交易策略,从早期的均值回归到利用内核方法等等。

https://www.bilibili.com/video/BV1ae4y1f7Em

\

更新时间:2022-10-10 12:50

Python for Quants - 用于量化投资的Python

参考 https://wesmckinney.com/book/ 编写 Python For Quants - 用于量化投资的Python

更新时间:2022-10-10 01:02

人工智能:揭秘微软AI量化研究 华泰证券-202201

摘要

揭秘微软亚研院 AI 量化投资研究,展望行业未来发展六大趋势

微软亚研院2017年以来共发表12篇AI量化投资学术研究,其中选股主题超过半数,其他涉及风险模型、算法交易、数据增强、时间序列预测、基础架构等话题。这些研究的突出特点是前沿和务实,具有较高参考价值。前沿是指使用的AI技术,大量运用近年来热门的图神经网络、注意力机制,并灵活应用最优传输、自步学习、知识蒸馏、解耦表征等工具;务实是指解决的具体问题,如“AI模型如何应对市场规律变化”,“如何引导模型学习罕见本”,“如何充分挖掘事件、舆情蕴藏的信息”等,这些都是业界实践中会遇到、接地气的问题。我们透过微软AI量化研究

更新时间:2022-08-31 09:47

Learning a Vector Representation of Time

/wiki/static/upload/c9/c94fbe09-58ac-483f-8d29-ba184e00cfb3.pdf

\

更新时间:2022-08-31 09:37

机器学习能用于基金组合构建吗

摘要

文献来源:Demiguel V, Gil-Bazo J, Nogales F J, et al. Can Machine Learning Help to Select Portfolios of Mutual Funds?[J]. Social Science Electronic Publishing, 2021.

推荐原因:众所周知,事先确定未来表现优异的共同基金是一项困难的任务。本文基于大量投资者容易获得的基金特征数据,利用机器学习方法训练提升其预测能力。研究发现,利用1980年至2018年期间美国股票型基金的数据,基于机器学习方法构建的基金组合,经风险调整

更新时间:2022-08-31 09:22

使用机器学习法推理基金配置

摘要

文献来源:Byrd, David, Sourabh Bajaj, and Tucker Hybinette Balch. "Fund Asset Inference Using Machine Learning Methods: What’s in That Portfolio?." The Journal of Financial Data Science 1.3 (2019): 98-107.

推荐原因:

![{w:100}{w:100}](https://mmbiz.qpic.cn/mmbiz_png/7gro3mu9ykFMbyA7gTRa5uzNB

更新时间:2022-08-31 08:58

机器学习时代,随机过程的数学知识还重要吗?

摘要

这是最近在Quora上的一个提问:

Is stochastic math and Brownian motion still important to quantitative hedge funds? Is it all about AI and machine learning now?

机器学习算法大流行的时代,传统的量化金融理论,如随机过程、布朗运动等在量化对冲基金还重要吗?这本质上还是Q-Quant与P-Quant发展的问题。在这个问题下面,很多网友给出了很精彩的回答。

正文

▌Aaron Brown

很多量化投资策略都是基于非常简单的数学。复杂的工具往

更新时间:2022-08-31 08:47

分页第1页第2页第3页第4页第5页第6页第7页
{link}