机器学习

机器学习在金融领域的应用日益广泛,为金融业务的智能化提供了强大动力。它运用算法和模型,自动从海量数据中学习和提取有用信息,无需人工进行复杂编程。在金融风控方面,机器学习技术可帮助银行、保险公司等机构更准确地识别欺诈行为,降低信贷风险。在投资策略上,通过对历史数据的深度学习,机器能预测市场走势,为投资者提供更精准的建议。同时,机器学习还能优化客户服务,例如通过聊天机器人提供24小时在线咨询,或根据客户行为数据提供个性化金融产品推荐。总的来说,机器学习不仅提升了金融业的效率和智能化水平,也在重塑我们的金融生态。

机器学习与量化投资:前沿研究之深度森林(gcForest)-安信证券-20180705

摘要

gcForest算法

gcForest(multi-Grained Cascade Forest)算法是2017年周志华教授提出来的一种基于树的深度模型,旨在作为深度神经网络的一种可供选择的替换。由于超参数更好的鲁棒性,小样本上更好的稳定性,因此该模型相对于神经网络可能在金融数据上有更好的表现。

gcForest的回测表现

将《机器学习与量化投资:避不开的那些事(1)》中的神经网络替换成为gcForest,按月收益回撤比可达15.959。

gcForest的参数敏感性

该模型的各个参数的敏感性都非常低。

正文

[/wiki/static

更新时间:2022-10-10 01:40

Python for Quants - 用于量化投资的Python

参考 https://wesmckinney.com/book/ 编写 Python For Quants - 用于量化投资的Python

更新时间:2022-10-10 01:02

LSTM 模型市场择时策略-华西证券-20210909

摘要

量化择时交易策略

机器学习量化交易策略的制定,是通过从海量历史数据中,利用计算机强大的处理能力,挖掘并分析出那些能够为投资者带来收益的各种大概率可行的投资方式来实现的。通过数学模型对这些策略进行分析并加以验证,以期望让投资者获得更高更稳定的收益,或更合理地规避风险。

长短期记忆模型通过记忆单元有效地学习长期依赖关系,在金融市场预测中具有明显优势

长短期记忆网络是人工神经网络的一种,具有负责计算时间序列中各个观测值之间依赖性的能力,同时具有快速适应趋势中急剧变化的固有能力。所以,长短期记忆模型可以在波动的时间序列中很好地工作。在处理股票价格这样的时间序列数

更新时间:2022-10-09 06:15

机器学习之“深度学习”

1958 年感知机的诞生以及1986 年反向传播算法的出现,为深度学习奠定了基础。

1989 年,卷积神经网络(CNN)首次被提出,共用卷积核的方式很大程度上减少了模型中需要被训练的参数,在图像识别等方面有更好表现。

2000 年,一类非常重要的循环神经网络(RNN),长短期记忆神经网络(LSTM)被提出,在一定程度上缓解了梯度消失和梯度爆炸等问题。

2009 年,深度信念网络(DBN)与深度玻尔兹曼机(DBM)先后被提出,其中 DBM是多个受限玻尔兹曼机(RBM)相连构成的无向图,而 DBN 是在最远离可视层处为 RBM,其余层为贝叶斯信念网络的混合模型。

同年,图神经网络(GNN)

更新时间:2022-09-29 03:27

周期理论与机器学习资产收益预测 华泰证券_20180529_

摘要

基于资产周期状态与市场表现的关系规律,采用机器学习挖掘预测逻辑本文首先介绍美林时钟等宏观择时模型,分析其根据经济周期状态的划分进行资产配置的原理,同时指出其应用于中国等新兴市场投资时遇到的挑战。其次,简要回顾华泰金工周期系列研究基于市场统一周期规律提出的周期三因子资产定价模型,以及机器学习挖掘市场规律的原理。最后,采 用机器学习的方法发现资产所处的周期状态与其未来市场表现的内在逻辑,实现对资产收益排序的概率预测,并通过对全球市场和中国市场的实证研究,证明该方法对指导资产配置的有效性。 市场周期运动的主导特征是基于资产周期状态预测其未来表现的基础美林时钟模型为宏观择时到资产配置的投

更新时间:2022-09-19 15:19

如何运用人工智能进行投资J.P. Morgan:AI for Investing

摘要

2022世界人工智能大会于2022年9月1日至3日在上海举办。世界人工智能大会自2018年以来,已成功举办四届。2022世界人工智能大会由国家发展和改革委员会、科学技术部、工业和信息化部、国家互联网信息办公室、中国科学院、中国工程院和上海市人民政府共同主办。

作为本届世界人工智能大会承办单位之一,数库科技于9月3日下午举办以“数无疆·智无界”主题分论坛,J.P. Morgan亚太地区量化策略负责人Robert Smith先生发表了题为*《Big Data and AI Strategies:AI for Investing》*的主题演讲,Robert Smith分别

更新时间:2022-09-19 03:58

Two Sigma:高频数据的机器学习模型的例子

摘要

机器学习是当前金融建模、预测和决策的最先进技术。然而,实现这一潜力需要克服许多复杂的挑战。在本次演讲中,Two Sigma的Justin Sirignano——他也是牛津大学数学副教授——讨论了金融领域机器学习的机遇和挑战。Justin介绍了用于高频数据的机器学习模型的例子,并涵盖了包括训练深度学习模型来尝试预测价格波动,以及使用强化学习来尝试确定最优执行策略。我们今天先分享第一个案例,使用RNN预测股票高频价格。

正文

![{w:100}{w:100}{w:100}](https://mmbiz.qpic.cn/mmbiz_png/42N1g4fYA

更新时间:2022-09-13 07:20

A股市场机器学习多因子模型实证

摘要

本期遴选论文

来源:Journal of Financial Economics 145 (2022) 64–82

作者:Markus Leippolda,Qian Wanga,Wenyu Zhou

标题:Machine learning in the Chinese stock market

Gu(2020)在The Review of Financial Studies发表的Empirical Asset Pricing via Machine Learning中,详细实证了机器学习模型在美股市场的表现。**结果表明,机器学习改善了对预期

更新时间:2022-09-13 06:52

你是如何看待机器学习,以及算法竞赛的?

机器学习作为发展中的学科,毕业后的从业人员年薪非常可观,平均年薪达到了144721美金。

一些头部公司的薪水大方到让人羡慕,ebay甚至能出到接近35万美金的年薪。在圣地亚哥市,机器学习工程师的平均年薪则在156376美金左右。

有网友说,接触机器学习,深度学习和计算机视觉已经一年有余,从小白逐渐到了有了一定知识和经验积累的学习者。目前的任务是通过深度学习训练神经网络以使其能对特定植物的进行切割,需要兼顾准确率和速度。植物的形态确实比一般物体复杂,很具有挑战性。

竞赛实战,可以让参与者更深刻体会ML的一些关键步骤,从工业视角去理解,例如了解度量优化——每个问题都有其独特的评估指标。如何在

更新时间:2022-09-13 00:34

2023校招宣讲会·复旦站,本周四18:00,欢迎准时加入

机器学习可以帮助我们进行预测和决策。可以用历史数据训练机器学习模型,来预测某个资产未来的收益率,或者是波动率(风险),然后基于模型预测来进行交易。

比如,在选股策略中,我们可以把股票的量价数据、财报数据、新闻数据等作为输入,让模型预测股票未来收益率,接下来做多预期收益率高的股票,做空预期收益率低的股票。

所以,用机器学习方法的优势,就是处理数据,从数据中获得规律的能力比传统方法要强大。

更多关于机器学习在量化投资中的应用,9月8日18:00,非凸科技的联合创始人&CTO李佐凡为同学们做深入讲解,欢迎准时参加哦@复旦

相关链接:<https://mp.weixin.qq.com/s/Ym

更新时间:2022-09-05 09:35

机器学习与CTA,数据挖掘与人类对世界的认识-安信证券-20180701

摘要

机器学习与CTA:数据挖掘与人类对世界的认识

这是机器学习与CTA周报的第九篇,机器学习中证500神经网络策略上周(6.25-6.29)收益0.87%,机器学习商品期货策略收益2.72%,7.2-7.6大概率看多的商品是铁矿石;大概率看空的商品是白糖,焦炭,玉米,焦煤。机器学习与基本面结合商品策略收益-1.13%,下周看多铅,看空锡。

风险提示:根据历史信息及数据构建的模型在市场急剧变化时可能失效。

正文

[/wiki/static/upload/dc/dc506e90-d4ee-4955-9482-75f52dba743e.pdf](/wiki/static/up

更新时间:2022-09-01 13:15

机器学习之“小样本学习”,可应用于证券择时场景

小样本学习(Few-Shot Learning,FSL)是一种新颖的机器学习方法,旨在从少量的标记数据中学习。

深度神经网络在大数据上取得了骄人的成绩,但在仅有少量样本时表现得不尽如人意,而在很多实际情况中,数据难以取样或大量累积。为解决问题,小样本学习越来越受关注。

机器学习是从数据中学习,使完成任务的表现越来越好,而小样本学习则是具有有限监督数据的机器学习。

近年来,各种机器学习方法己被广泛应用到金融时间序列预测方面。这些方法往往是基于历史大样本数据进行训练,且假设训练样本和预测样本的分布是一致的。但股市分布并不稳定,在不同时间段,分布也不同。

为避免股市数据分布变化的问题,一个有

更新时间:2022-09-01 03:42

机器学习能用于基金组合构建吗

摘要

文献来源:Demiguel V, Gil-Bazo J, Nogales F J, et al. Can Machine Learning Help to Select Portfolios of Mutual Funds?[J]. Social Science Electronic Publishing, 2021.

推荐原因:众所周知,事先确定未来表现优异的共同基金是一项困难的任务。本文基于大量投资者容易获得的基金特征数据,利用机器学习方法训练提升其预测能力。研究发现,利用1980年至2018年期间美国股票型基金的数据,基于机器学习方法构建的基金组合,经风险调整

更新时间:2022-08-31 09:22

机器学习与标准长周期商品期货策略-安信证券-20180321

摘要

本商品策略通过机器学习可以对未来一周的走势进行预测,每周周末计算信号,周初第一天以TWAP调仓,频率低,资金容量大。

预测目标——从收益到其他

除了下期收益外,预测目标也可以是风险调整后的收益。在预测目标是风险调整后的收益下回测夏普略高,这一回测结果可以得到金融行为学的理论支持。

风险提示:标准长周期商品期货策略是基于商品历史数据的总结。由于商品期货出现较晚,市场依然处在高速变化中,模型存在较大的失效风险。

正文

[/wiki/static/upload/1c/1cc0bc43-4bec-4616-8c13-15728fcf4e73.pdf](/w

更新时间:2022-08-31 09:09

使用机器学习法推理基金配置

摘要

文献来源:Byrd, David, Sourabh Bajaj, and Tucker Hybinette Balch. "Fund Asset Inference Using Machine Learning Methods: What’s in That Portfolio?." The Journal of Financial Data Science 1.3 (2019): 98-107.

推荐原因:

![{w:100}{w:100}](https://mmbiz.qpic.cn/mmbiz_png/7gro3mu9ykFMbyA7gTRa5uzNB

更新时间:2022-08-31 08:58

行业收益的可预测性:使用机器学习方法

摘要

文献来源:David E. Rapach, Jack K. Strauss, Jun Tu and Guofu Zhou. "Industry Return Predictability: A Machine Learning Approach." The Journal of Financial Data Science, Summer 2019, 1 (3) 9-28.

推荐原因:在整体经济环境中,利用滞后行业的收益,使用机器学习工具分析行业收益的可预测性。通过对后选推断和多重测试的控制,发现了行业收益可预测性的重要样本内证据。金融行业、大宗商品和材料生产行业的滞后

更新时间:2022-08-31 08:51

动量、均值回归和社交媒体:来自StockTwits和Twitter的证据

报告摘要

新闻内容和社交媒体情绪研究的兴起

在过去10年中,金融市场中新的系统性风险因素的不断发酵,这些问题在一定程度上是由于流动性减少造成的。随着机器学习的使用,用来定量衡量新闻内容和社交媒体情绪的另类数据得到广泛应用。本文试图研究社交媒体和新闻数据能否为投资者提供现有数据无法捕捉到的市场情绪高涨和恐慌的信息。

研究现状

本文是首个研究社交媒体情绪对日内流动性影响的文章,但也有学者研究社交媒体和新闻如何影响资产价格,比如Twitter和谷歌Insight Search (GIS)情绪可以预测每日股市指数的回报等,一些研究还考虑了社交媒体对个人行为的影响。

更新时间:2022-08-31 08:48

机器学习时代,随机过程的数学知识还重要吗?

摘要

这是最近在Quora上的一个提问:

Is stochastic math and Brownian motion still important to quantitative hedge funds? Is it all about AI and machine learning now?

机器学习算法大流行的时代,传统的量化金融理论,如随机过程、布朗运动等在量化对冲基金还重要吗?这本质上还是Q-Quant与P-Quant发展的问题。在这个问题下面,很多网友给出了很精彩的回答。

正文

▌Aaron Brown

很多量化投资策略都是基于非常简单的数学。复杂的工具往

更新时间:2022-08-31 08:47

中国市场中怎样用机器学习来做股票投资

摘要

文献来源:Leippold, M., Wang, Q. & Zhou, W. (2021). Machine-Learning in the Chinese Stock Market. Journal of Financial Economics.

推荐原因:随着机器学习在金融和经济领域的应用迅速兴起,越来越多的学者利用机器学习工具研究股票的截面和时间序列预测。而中国股票市场历史较短,制度依然处于不断完善的阶段,有着自身的特殊性。本文根据中国市场的特征构建了一个全面的股票收益预测因子集,并利用几大流行的机器学习算法进行实证分析。经过CSPA条件预测能力检验,作者发现神经

更新时间:2022-08-31 08:45

量化研究:投资决策的起点 海通证券_20180716_

正文

/wiki/static/upload/25/259b1aaa-df16-4ed2-abd6-8ad67bba7fb7.pdf

\

更新时间:2022-08-31 08:06

Robeco荷宝:使用机器学习预测股票崩盘风险

摘要

今天给大家分享一篇Robeco荷宝的最新文章。关于大数据和机器学习的重大发展正在推动量化投资的前沿。计算能力的增强促进了机器学习模型的部署和使用。与基于规则的模型相比,这些模型采用完全数据驱动的方法,能够对复杂的非线性关系建模。可以潜在地揭示简单线性模型无法捕捉到的系统性和重复模式。

例如,某些变量可能只有当它们超过某个阈值时,或者当它们与其他变量结合时,或者它们可能只能预测表现不好的股票时,才能预测股票收益。在这篇白皮书中,我们深入探讨了如何使用ML技术可以推动量化建模到下一个水平。我们也看一个具体的例子,用机器学习模型来预测个别股票价格崩溃。

机器学习技术在量化投资中的不

更新时间:2022-08-31 08:00

海外文献:揭秘机器学习在中国市场的有效性 东兴证券-202201

摘要

在开发量化投资策略时,海外优秀论文往往能够提供新的思路和方法,为了能够让各位投资者更有效率地吸收海外的经验,东兴金工团队推出海外文献速览系列报告。我们将定期从海外文献中筛选思路较为新颖且有潜力应用于国内市场投资的文章,以速览的形式呈现给各位投资者,内容涵盖贵产配置、量化选股、基金评价以及衍生品投资等多个方面。

正文

[/wiki/static/upload/70/70b486a1-1ada-4878-9e19-d929f01a6b73.pdf](/wiki/static/upload/70/70b486a1-1ada-4878-9e19-d929f01a6b73.pdf

更新时间:2022-08-31 07:55

基于网络舆情的指数轮动策略研究 广发证券_20180409

摘要

互联网大数据与量化投资身处大数据时代,我们所面对的数据的维度在不断增加。传统的量化投资模型基于财务报表及市场价量信息构建因子,信息来源相似性较高导致模型趋同、交易拥堵。在互联网中,非传统金融数据(如舆情、搜索量、语文文本)不断积累,这其中就包括许多对投资有用的信息。

互联网舆情数据可预测性分析相较于传统的金融数据,互联网舆情数据可以及时地描述投资者的情绪面。众多数据源中,舆情搜索指数反映了众多投资者对某类信息的关注情况,本文将众多投资者对大小盘的舆情搜索情绪作为投资者情绪的直接代理变量,以此来研究大小盘风格轮动与舆情变化的强弱之间的关系。投资者情绪随着大小盘风格的变化而波动,同

更新时间:2022-08-31 07:24

Hudson River Trading:如何正确看待Machine Learning学术论文

摘要

在HRT,做好工作意味着不断学习和提高。作为不断学习的一部分,HRT的研究员也持续关注学术研究——无论是为了跟上他们研究领域的最新发展,还是为了学习对我们工作有用的进展。我们经常被问到,阅读和应用最新成果是否是我们工作的重要组成部分。在实践中,我们很少能读到一篇论文就立即将其应用于我们的问题。

近年来,这些领域的一些大型论文都非常强调实证结果,而不是理论结果,我们在HRT中试图解决的具体问题也永远无法得到相关论文中对应的实证结果——神经网络区分犬种的能力每增加0.1%的精度提高,但无法转化为对股票价格的预测。因此,我们倾向于用与学术会议审稿人略有不同的维度来评估论文——即简单性

更新时间:2022-08-31 07:22

QIML Insight:基于多源特征及机器学习的股票聚类模型

核心观点

本文提出了一种基于数据驱动的行业分类方法,该方法以不同的粒度级别将类似的公司聚集在一起;机器学习的技术可以从相关数据源中提取特征,并学习相关关系,从而识别出在样本外时期风险回报情况相似的公司。历史收益相关性、GICS分类、10-K报告、规模、动量、资产负债率等基本因子对企业相似性的预测贡献最大。

行业分类体系在投资组合构建中有着非常广泛的应用,一个好的行业分类体系有以下两个特点:最小化组内股票的差距和最大化的组间股票区别。构建投资组合时,投资者往往通过分散行业配置来达到组合风险分散化的效果。但这种基于公司业务的分类体系,相对比较固定,在多变的市场环境及多样的市场观念下,很多

更新时间:2022-08-31 07:21

分页第1页第2页第3页第4页第5页第13页
{link}