机器学习

机器学习在金融领域的应用日益广泛,为金融业务的智能化提供了强大动力。它运用算法和模型,自动从海量数据中学习和提取有用信息,无需人工进行复杂编程。在金融风控方面,机器学习技术可帮助银行、保险公司等机构更准确地识别欺诈行为,降低信贷风险。在投资策略上,通过对历史数据的深度学习,机器能预测市场走势,为投资者提供更精准的建议。同时,机器学习还能优化客户服务,例如通过聊天机器人提供24小时在线咨询,或根据客户行为数据提供个性化金融产品推荐。总的来说,机器学习不仅提升了金融业的效率和智能化水平,也在重塑我们的金融生态。

机器学习发展历程与量化投资的展望 20220805-东北证券

摘要

1.1.人工智能正当时1956年,人工智能(ArtificialIntelligence,AI)的概念在计算机达特茅斯会议上被提出。AI赋予机器像人一样思考,并做出反应的能力。它的本质是通过研究人类活动的规律,构造具有一定智能的人工系统来模拟人类的某些思维过程和智能行为,去完成以往需要人的智力才能胜任的工作。

如今,大数据、GPU和复杂算法的出现与进步,大大加速了人工智能的发展。2016年,由DeepMind开发的AlphaGo以4:1战胜了韩国棋手李世石,让人工智能备受关注,掀起了人工智能的浪潮。这一新兴学科凭借其广阔的发展前景吸引了众多研究者,目前已经在计算机视觉、自然语

更新时间:2022-08-31 07:02

监督学习的方法介绍及金融领域应用实例-长江证券-20170727

摘要

机器学习系列报告

本系列报告试图系统全面性的介绍各种不同的机器学习方法,并且结合具体的在投资研究领域应用实例、交易策略及code示例,说明其应用情景和实现方法。机器学习的方法可以分为以下几类:监督学习、无监督学习、深度学习及其他机器学习方法(例如强化学习),对应到具体的模型上数量则更是繁多,目前大部分机器学习模型并未广泛的应用在投研领域,因此本系列主要偏重于在投研领域有应用潜力的模型及方法。此篇将以介绍监督学习方法为主

监督学习模型之回归类模型及其应用

与普通线性回归不同,监督学习中的惩罚回归模型和非参数回归,可以分别用于处理输入变量中存在大量线性相关性关系

更新时间:2022-08-31 01:52

摩根大通深度报告:另类数据与机器学习算法入门

{w:100}{w:100}介绍

发布单位:J.P.Morgan

原标题:《大数据和人工智能战略—机器学习和另类数据投资方法》

发布时间:2017年5月

简介:本报告旨在为机器学习和大数据投资提供一个框架。这包括一个对另类数据类型的概述,以及分析它们的机器学习方法。

其中,另类数据包括个人数据(如社交媒体)、业务流程数据(如商业数据) 交易和机器生成的数据(例如卫星图像数据)。

同时报告我们解释和评估不同的机器学习方法,这些方

更新时间:2022-08-30 09:51

机器学习判断策略失效的方法-安信证券-20180416

摘要

机器学习波动率预测

大多数量化策略的盈利与波动率高度相关。预知波动率对于分配每个策略的仓位至关重要。使用机器学习进行波动率预测较传统方法的预测效果有所提升。

机器学习策略判断失效的方法

判断机器学习策略失效有独特的方法,可以在击穿最大回撤前提前下线策略。

机器学习在量化投资中应用的杂谈

我们在这一章节中致力于打通实盘的各个环节,以及展开对机器学习对冲基金运营方式的探讨。

正文

[/wiki/static/upload/3a/3af7bff5-f4fe-4eef-96df-74530303b737.pdf](/wiki/static/up

更新时间:2022-08-30 09:00

机器学习与量化投资:综述与反思,扬帆正当时-安信证券-20180207

摘要

机器学习和人工智能在量化投资的应用有很长的历史

机器学习在九十年代初的热潮中已经被大量运用于量化投资中。尽管受限于当时的计算能力和算法,但是由于在算法交易和CTA等领域中机器学习提供了一些更好的解决方案,机器学习在这些领域的应用一直延续到今天

机器学习在量化投资中应用的九个思考

本报告是系列报告的第一篇,简略介绍了机器学习运用到二级市场投资过程中的一些常见问题。这些问题覆盖了策略研发常见错误,策略归因,策略失效判断,机器学习平台的建立,交易系统和机器学习平台的对接以及机器学习对冲基金的团队架构。后续系列报告将会详细围绕这些问题展开

**适当使用下的机器学习

更新时间:2022-08-30 09:00

基于机器学习模型的因子择时框架-渤海证券-20200331

摘要

2017年以来,随着市场上量化策略的增多,许多以前十分有效的因子,如市值因子、动量因子、波动率因子等,都出现了比较明显的震荡或者失效。想要靠传统多因子模型取得超越基准的稳定收益变得越来越难。对于因子择时模型的研究需求也在持续上升。

本篇报告分为三部分:

首先,我们介绍了因子择时常用的几个指标,包括因子估值差与配对相关性等,并测试了其与因子未来收益的相关性。

然后,我们使用随机森林函数,构建因子择时模型。与大多数因子择时模型不同,我们的预测目标是因子收益的历史移动平均与实际因子收益的差距。对于收益波动较大的因子,移动平均比较难抓到因子短期的趋势。而择时

更新时间:2022-08-30 07:48

东方机器选股模型Ver1.0-东方证券-20161107

研究结论

机器学习容易给人“黑箱模型”和“过拟合”的印象,但事实上一些机器学习算法的逻辑和结果都非常直白,而且算法自身带有一套避免过拟合的参数估计机制。众多的实践研究说明,机器学习方法的预测能力大部分情况下都强于线性模型,很值得在量化投资中测试使用。本报告主要讲述机器学习的基本原理和用其来做量化选股的实证结果。

机器学习模型众多,不存在所谓的最强模型,不同的数据,不同的问题适用不同的模型。我们测试了LASSO、SVM、增强型决策树、随机森林等几种常见机器学习方法,最终选择用随机森林,主要是因为它结构简单、参数少、过拟合概率低,同时还具有非常强的样本外预测能力。机器选股模型省

更新时间:2022-08-30 02:27

理解贝叶斯公式

第一次理解贝叶斯公式视频

https://www.bilibili.com/video/BV19V411o7Pu

\

贝叶斯公式

$P(B|A) = \dfrac{P(A|B) \times P(B)}{P(A)} $

来自

$P(AB) = P(A) \times P(B|A) = P(B) \times P(A|B) $

在机器学习里的解读

贝叶斯公式在机器学习里被广泛是用,是一个基础公式

$P(B|A) = \dfrac{P(A|B) \times

更新时间:2022-08-28 12:15

基本面量化


\

更新时间:2022-08-25 02:16

量化选股


\

更新时间:2022-08-25 02:16

机器学习及其在金融市场中的应用 申万宏源_20180621

摘要

  1. 机器学习已广泛应用于各个前沿领域

  2. 机器学习在金融市场中的应用举例 1.Lasso回归与商品期货价格预测

    2.使用决策树模型预测财务造假

    3.逻辑回归与债务违约预警

    4.集成学习在多因子选股中的应用

  3. 机器学习应用于金融市场的局限

正文

/wiki/static/upload/7e/7e665c7e-52b2-4d99-8700-4d1d4585ad31.pdf

\

更新时间:2022-07-30 01:18

人工智能系列之十二:人工智能选股之特征选择 华泰证券_20180725_

摘要

特征选择是人工智能选股策略的重要步骤,能够提升基学习器的预测效果特征选择是机器学习数据预处理环节的重要步骤,核心思想是从全体特征中选择一组优质的子集作为输入训练集,从而提升模型的学习和预测效果。 我们将特征选择方法应用于多因子选股,发现特征选择对逻辑回归_6m、基学习器的预测效果有一定提升。我们以全A股为股票池,以沪深300和中证500为基准,构建行业中性和市值中性的选股策略。基于F值和互信息的方法对于逻辑回归_6m、XGBoost_6m、基学习器的回测表现具有明显的提升效果。 随着入选特征数的增加,模型预测效果先上升后下降特征个数并非越多越好。以逻辑回归_6m和XGBoost_

更新时间:2022-07-29 07:12

人工智能43:因子观点融入机器学习

摘要

本文构建了可融入因子观点的随机森林模型,提升了随机森林的灵活性

相比线性模型,机器学习模型的复杂程度大幅提升,模型对于历史数据的拟合能力变强,但灵活性下降。在动态演化的金融市场中,机器学习的这些特性使其备受挑战。为了提升模型的灵活性,我们改进了sklearn的随机森林模型,可指定优先分裂的因子来分裂决策树,从而人为增大优先因子的重要性。最后,我们以价值、成长、质量为优先分裂因子分别训练模型,构建了中证800价值、中证800成长、中证800质量三个组合,该测试能为构建结合机器学习的SmartBeta策略提供一种思路

**面对量化投资中的挑战,如何提升机器学习的灵活性值得

更新时间:2022-07-29 05:24

大数据人工智能研究之七:零基础python代码策略模型实战

重要观点

本文概述

本文主要介绍了python基础、爬虫、与数据库交互、调用机器学习、深度学习、NLP等。分别介绍了各个模块的安装,环境的搭建等。并且以机器学习选股为例,把各个模块连贯起来,核心代码基本都有详尽的解释。

大数据AI时代,python无往不胜的包装能力、可组合性、可嵌入性都很好,可以把各种复杂性包装在Python模块里,非常友好的供调用。Python资源丰富,深度学习如keras,机器学习如sk-learn,科学计算如numpy、,自然语言处理如jieba等。Python将极大提高工作效率无论是科学计算,还是图形界面显示;无论是机器学习还是深度学习;无论是操作e

更新时间:2022-07-29 05:23

海外文献推荐 第62期 天风证券 20181107

摘要

利用 CART 决策树选股 机器学习在金融领域有着非常广泛的应用,本文将 CART 决策树算法应用于选股模型之中。决策树模型相比于传统的线性模型或者判别分析其优势在于能解释模型中的非线性关系以及变量之间相互依赖的现象。本文以罗素 1000 指数中科技板块的选股为例,作者展示了 CART 决策树模型在于截面选股中的应用,动态 CART 决策树模型相比于简单的指标筛选方式表现出更高的多空收益以及夏普比率。

正文

[/wiki/static/upload/95/952a052e-e01e-4ae1-b7cf-b88620b96095.pdf](/wiki/static/uploa

更新时间:2022-07-27 10:15

【虎】虎系列策略

1.https://bigquant.com/live/strategy?notebook_id=4ab011f4-c320-11ec-98fa-361fbc3525fa

2.https://bigquant.com/live/shared/strategy?id=80110

3.https://bigquant.com/live/shared/strategy?id=79204

选择最近市场表现比较活跃的股票;

检测股票最近资金流量的变化;

用多因子策略选股;

最近表现比较好


\

更新时间:2022-07-10 14:37

关于模型训练的一点简单想法:以DNN和StockRanker对比为例

作者:donkyxote

策略思想

基于17个短期因子,其中8个量价因子,9个均线因子。训练集使用2005-01-04至2020-06-01日,每个交易日买入模型当日预测结果排名靠前的1只A股股票,次日卖出。

StockRanker模型

原有模型是基于BQ提供的Stockranker机器学习算法:


![图 1:stockranker-2021年1月4日至2022年1月21日的模拟实盘结果{w:100}{w:100}](/wiki/api/attachments.redirect?id=bb5b3d09-3e20-4840-b5e0-2220d7f55

更新时间:2022-06-22 14:58

了解机器学习的3个发展方向,帮你清晰整个领域!

方向1:“经典的”机器学习方法。它们现在有足够的计算算力来处理大多数高维问题。其中的核心问题是提供更多的理论保证,产生作为“因果”模型基础所需的那种“可解释性”,并引导时代精神远离直线、p 值和柏拉图式的形状。

方向2:行业应用。这更多地涉及到典型的“自动化”工作,即数据争论、领域逻辑理解和政治活动。只是新一轮的自动化浪潮现在和以往一样,得到了更高级工具的支持。

方向3:镀金类型的研究,这是由一些理想主义者和许多试图通过论文进入职业生涯轨道的学生进行的。这是最有趣的发现,它们隐藏在成堆无法操作或低影响的噪音中。但从表面来看,抽象概念正在转移到以前被认为是强化学习的领域。

这三个方向任意两

更新时间:2022-06-10 09:11

吴恩达经典《机器学习》课程本月关闭注册,推出已10年!

要说人工智能领域的课程,斯坦福大学客座教授吴恩达的《机器学习》(Machine Learning)堪称经典。该课程最开始于2012年在Coursera上线,10年间已经吸引了近500万人注册。《机器学习》课程主要介绍了机器学习、数据挖掘和统计模式识别的基础知识和实践经验。   然而,近日Stanford Online 和 DeepLearning.AI 团队宣布了一项重要通知:《机器学习》课程将从 2022 年 6 月 14 日起关闭在 Coursera 上的新学员注册。此外,对于正在上《机器学习》课程的学员来说,该课程将不会再更新。

这个

更新时间:2022-06-06 08:15

高质量AI量化策略

https://bigquant.com/experimentshare/dd9cff01459a41f9be40d7e660164795

\

更新时间:2022-05-22 01:17

AI量化Meetup


\

更新时间:2022-05-17 02:56

Deep Alpha 研讨会-互动问答环节

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}Q1:现在海内外量化实践有什么代际差吗?海外接下来量化方向除了另类数据应用,还有什么发展潮流?他们对于国内量化市场是怎么判断的?

**关子敬:**在我看来海内外最主要的差别是:国内投资人是偏向喜欢直接对股价做预测,而海外直接预估股价比较少,主要做填充模型(imputation model),针对遗失数据做估算,特别是在

更新时间:2022-04-27 01:48

xgboost自定义目标和评估函数

https://bigquant.com/experimentshare/648ff204e53d44059c2d726e9219cfa3

\

更新时间:2022-04-21 06:21

华泰人工智能系列之一:人工智能选股框架及经典算法简-华泰证券-20170601

摘要

人工智能和机器学习并不神秘

人工智能和机器学习方法并不神秘,其本质是以数理模型为核心工具,结合控制论、认知心理学等其它学科的究成果,最终由计算机系统模拟人类的感知、推理、学习、决策等功能。理解常用的机器学习算法,有助于澄清对人工智能的种种误解和偏见,帮助我们更清晰地认识人工智能的长处和局限,从而更合理、有效地将人工智能运用于投资领域。

机器“学习”的对象是客观存在的规律

机器学习的对象是某种客观存在的规律。这种规律可以非常浅显,比如教给计算机勾股定理,机器就拥有了计算直角三角形边长的智慧。规律也可以相当复杂,如指纹识别系统学习的是不同指纹图像之间差异的规律,

更新时间:2022-04-20 14:17

Deep Alpha 研讨会—《Bloomberg:风从海外来 海外AI量化最新前沿》

主题:The Impact of AI to Global Asset Managers: The Responses and Adoptions

演讲人:关子敬 先生 Kevin Kwan彭博亚太区量化及数据科学专家

{w:100}{w:100}{w:100}{w:100} **完整视频观看地址:<https://webcast.roadshowchina.cn/cmeet/NlZBZVhZRGZ6Q1NSRjdrbmJqQjZUQT09

更新时间:2022-04-18 02:08

分页第1页第2页第3页第4页第5页第11页
{link}