风险管理

从金融视角来看,风险管理是企业持续发展和稳健运营的核心要素。它涉及识别、评估、监控和控制潜在的风险,以便将不良影响最小化,并促进企业在不断变化的经济环境中保持弹性。有效的风险管理策略不仅有助于保护资产和减少损失,还能增强投资者的信心,维持公司声誉。为了确保这一流程的实施,金融机构通常采用先进的风险测量模型和技术,以及严格的内部政策和程序。这样的方法使机构能够预测潜在威胁,迅速应对突发事件,并在机会与风险之间找到适当的平衡,从而实现可持续增长和盈利。

ROE策略

策略介绍

本文将介绍经典的ROE策略,并通过编写简单的策略示例进行回测。

ROE策略是一种常用的财务分析和投资策略,特别在股票投资领域。它主要基于公司股本回报率的高低来评估和选择投资对象。

高ROE公司通常具有较强的盈利能力

  • 高ROE表明公司能以较少的股东权益产生更多的利润,意味着公司经营效率高,盈利能力强。

高ROE公司通常具有良好的管理和业务模式

  • 高ROE通常反映了公司管理层的优良管理能力和成功的业务模式,使得公司在竞争中具备优势。

高ROE公司通常具有较高的股东回报

  • 因为高ROE代表公司可以用股东的投入资金获得更高的收益,这

更新时间:2024-05-22 08:29

处理持仓中的"雷"股

导语

通过数据过滤我们可以在预测的时候避开ST股和退市股,但如果很不幸我们的买入持仓中有股票变成了ST股或者退市股时,我们应该如何快速卖出逃脱呢?本节我们就聊聊如何处理持仓中的“雷”股。

我们知道,模板的策略逻辑是卖出每日预测排序靠后的股票。那么尝试思考这样一个场景:某个持仓的股票突然发布公告启动ST或者退市流程,好股变成了“”雷“”股。但是很可能我们的排序预测模型始终意识不到这个雷,而导致此股的打分排序始终不是靠后的。这会导致这些烫手的山芋无法脱手,自爆仓中。不仅导致策略无法卖出此股,还会因其占用了资金而无法买入新的股票。

因此,我们在每天的交易逻辑前加入“雷股判断”,一旦发现持

更新时间:2024-05-22 03:42

如何对1-3日内上涨的股票进行标注

问题

freestyle996+如何运用股票标注的方法对1-3日内上涨的股票进行标注?

视频回放

https://www.bilibili.com/video/BV1uP4y1R7kh/?spm_id_from=333.999.0.0

策略源码

[https://bigquant.com/experimentshare/0a4bb333c1bb4f4e91d7701a3538f6f4](https://bigquant.co

更新时间:2024-05-21 09:10

策略中调用其他因子_AI

策略案例

https://bigquant.com/experimentshare/5cfd9186208047518a995e4394ba1099

\

更新时间:2024-05-21 08:15

2023-06-30 孤雁出群

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/2023-06-30-SDQHrTSMW7

https://bigquant.com/codeshare/c3078960-1a56-4a00-9f9e-772917208528


\

更新时间:2024-05-21 07:30

初识协整

新版请移至:

https://bigquant.com/wiki/doc/5yid6kg5y2p5pw0-d4d4ECrxKn

导语

本文介绍了协整的初步内容。


协整

直观理解

协整是什么这个问题回答起来不是那么直观,因此我们先看下图,了解一下具有协整性的两只股票其价格走势有什么规律。

![图1  两只协整股票的走势](/wiki/api/attachments.redirect?id=c7299e97-d4d4-44

更新时间:2024-05-21 06:44

高频回测模块择时策略

8月19日Meetup策略模板:

https://bigquant.com/experimentshare/a6bae485ffcc47819510b788ddfad338

\

更新时间:2024-05-21 06:30

DeepAlpha短周期因子研究系列之:DNN在量化选股中的应用


\

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

更新时间:2024-05-20 10:54

多因子选股策略-股票日频

https://bigquant.com/experimentshare/c2cf252d64b7408a8071f4d78f52a5ea

\

更新时间:2024-05-20 10:04

小市值策略源码

{{membership}}

https://bigquant.com/codeshare/ffad41f4-0b34-4997-9702-5b7753950675

\

更新时间:2024-05-20 07:35

用线性-回归算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 07:17

【教学贴】市值行业中性化到底是什么?

本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


众所周知,Barra因子分析是目前行业内外最常用的因子分析体系。

然而在做Barra体系分析的时候常用的一个方式就是行业或市值中性化,今天主要用最易懂的语言介绍一下什么是barra因子分析体系,以及什么是因子中性化。在这里我会避开繁琐的数学公式,尽量深入浅出的让

更新时间:2024-05-20 06:44

多层感知器回归模型案例


本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

[https://bigquant.com/experimentshare/42bf93884b1246ad83c2874f06765732](https://bigquant.com/experimentshare/42bf93884b12

更新时间:2024-05-20 06:39

强化学习在金融市场中的应用(上)

本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

[https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7c588b8d](https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7

更新时间:2024-05-20 06:33

策略小测试,增加20日均线向上过滤

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 06:17

基于大宽可视化的深度学习Hello World!

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

https://bigquant.com/experimentshare/421fbaa682a04d6bacf4d2f1f47b54c6

\

更新时间:2024-05-20 06:04

股票等权重设置

https://bigquant.com/experimentshare/5715a53b7df741f9be882f46e44f444e

\

更新时间:2024-05-20 05:58

Python基础入门


\

更新时间:2024-05-20 02:30

什么是量化投资?

导语

了解量化投资是成为宽客道路上的一块重要的敲门砖。本文从量化投资定义、量化投资特点、量化投资优势及量化投资实践流程四方面简要为大家介绍量化投资相关知识。

什么是量化投资?

量化投资是指通过数量化模型建立科学投资体系,以获取稳定收益。 在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。在国内,量化投资不再是一个陌生的词汇,近几年得到了迅猛的发展。

提起量化投资,就不得不提量化投资的标杆——华尔街传奇人物詹姆斯·西蒙斯(James Simons)。视频地址:“[横扫华尔街的数学家](https://bigquant.c

更新时间:2024-05-20 02:24

利用机器学习对冲风险

https://bigquant.com/experimentshare/d50ee96c36f84af6ad990409294db4cb

\

更新时间:2024-05-20 02:09

算法交易的主要类型与策略分析

前言

算法交易起源于上世纪中叶的配对交易

历史上最早使用算法交易的例子可以追溯到1949年。对冲基金之父阿尔弗雷德·琼斯,利用空对多3:7的比例进行配对交易,在1955年到1964年间,综合回报率高达28%。到了上世纪60年代早期,投资者开始利用计算机通过分析股票的周线和月线来预测价格运动方向。

配对交易逐渐成熟,发展成后来的算法交易。随后算法交易策略慢慢在华尔街流传开来并被广泛使用,同时也带来了非常可观的盈利。原来在摩根士丹利从事配对交易的研究员,后来逐渐成为如大卫·肖、詹姆斯·西蒙斯这类明星基金经理手下的精英,算法交易的“黑盒子”便由此诞生。

随着计算机的广泛普及,华尔街各大

更新时间:2024-05-20 02:09

对冲策略研究demo示例

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/0f3871389f5846009ba425fe066d03b2

\

更新时间:2024-05-20 01:07

神经网络交易算法

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

https://bigquant.com/experimentshare/723e10568f294571924b89f3953ce20b

\

更新时间:2024-05-20 01:02

用StockRanker算法实现A股股票选股

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/72d5601550164505aad979f7265f8fec

\

更新时间:2024-05-20 00:50

利用深度学习技术预测股票价格

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 10:28

分页第1页第2页第3页第4页第5页第17页
{link}