机器学习应用在市场微观结构和高频交易的思考

核心观点

短期涨跌的预测相比长期更容易,但覆盖交易成本后再获利的难度更大。所以在高频交易场景,机器学习更适合有限状态下的订单执行。而对于长期的预测,机器学习的训练目标可以不是评估在给定状态下的每股总利润或买入行为的回报,而是监控在该状态下买入与在所有可能状态下买入的相对盈利能力。

由small_q创建,最终由bqadm更新于

过拟合详解

导语

本文为Mehmet Süzen撰写文章的译文,稍有删改。文章清晰地阐释和区分过度拟合及过度拟合等概念,对于本领域学习者正确理解专业术语多有帮助。正如作者在原文末所指出的:对待简单的概念,我们也应抱着积极求学的态度,了解其成立的基础。

前言

大多数从业者对”过拟合“这一概念存在

由ypyu创建,最终由bqadm更新于

DQN个股择时策略研究与改进

导语

之前在社区分享过一个初版的强化学习策略,之后我们在那个基础上做了一些调整和优化,本文主要是关于新版策略的一些介绍和结果分析。

与初版策略的区别

新版策略与初版的主要区别在于state的定义不同。初版用当天的OHLCV和7个常用因子数据作为一条state。新版设置了一个win

由clearyf创建,最终由bqadm更新于

零基础《AI挑战虚拟股票预测大赛》入门教程

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

[https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW](https://bigquant.com

由ypyu创建,最终由bqadm更新于

GBDT+LR的应用

导语

10分钟了解GBDT+LR模型的来龙去脉

Gradient Boosting Decision Tree + Logistic Regression 建模过程中,解释变量质量的好坏 / 特征的好坏决定了模型的效果的上限,数据的噪音过多也会让模型检验的结果严重失真,而GBDT+LR

由ypyu创建,最终由bqadm更新于

LSTM 能否通过历史股价预测未来股价?

LSTM 的闹剧

随着深度网络的越来越普及,软件开发人员越来越容易对其进行实现,毫无疑问,很多开发人员会用他们熟悉的基于股票价格的预测来训练长短期记忆网络。我见过好几篇论文,展示了如何通过把历史资产价格用于LSTMs训练然后得出“完美地符合”现实的结果。

我相信你也曾怀疑过这些说法都只是一

由ypyu创建,最终由bqadm更新于

卷积神经网络入门,卷积池化与非线性

  • Update At 2017年6月23日

    本文作者HackCV

\

什么是卷积神经网络?为什么它们很重要?

卷积神经网络(ConvNets 或者 CNNs)属于神经网络的范畴,已经在诸如图像识别和分类的领域证明了其高效的能

由qxiao创建,最终由bqadm更新于

997篇-历史最全生成对抗网络(GAN)论文串烧

什么是GAN?(本文内容整理自网络)

GAN(Generative Adversarial Netwo,生成对抗网络)是用于无监督学习的机器学习模型,由Ian Goodfellow等人在2014年提出,由神经网络构成判别器和生成器构成,通过一种互相竞争的机制组成的一种学习框架。

![

由ypyu创建,最终由bqadm更新于

RSI相对强弱指数:因子构建与策略应用

顾名思义,相对强弱指数 (RSI) 指标告诉我们资产的相对强弱。换句话说,RSI 告诉我们股票相对于自身的表现(或不表现)。RSI 被视为一种强大的技术指标,可用于分析市场,并且是交易者武器库的重要组成部分,因为它可以帮助他们在市场时机上做出更好的决策。当然,与其他指标一样,始终建议使用多个指标,因

由qxiao创建,最终由small_q更新于

什么是股票tick数据,获取tick数据方法和作用

金融交易世界中,获取准确及时的tick数据至关重要。抓住交易良机的关键在于掌握实时tick数据。数据更新越快,可发现的赚钱机会就越多。这也是为何在高频数据交易领域,tick数据备受重视。与传统的行情数据相比,tick数据提供了更细致的市场变化记录,为交易者提供了更全面的视角。

首先,让我们简单了解

由bqaaxiat创建,最终由dandelion4更新于

量化投资策略有哪些类型特点及适用人群场景

量化投资策略是利用数学模型和算法来分析市场并做出投资决策的方法。这些策略可以大致分为几个类型,每种类型都有其特点、适用人群和适用场景。以下是一些主要的量化投资策略类型:

  1. 趋势跟踪策略
    • 特点:识别并跟随市场趋势,比如股票或商品的价格走势。
    • **适用人

由bqw9z8tc创建,最终由small_q更新于

机器学习常用35大算法盘点

本文将带你遍历机器学习领域最受欢迎的算法。系统地了解这些算法有助于进一步掌握机器学习。当然,本文收录的算法并不完全

由clearyf创建,最终由small_q更新于

一文读懂遗传算法(附python)


几天前,我着手解决一个实际问题——大型超市销售问题。在使用了几个简单模型做了一些特征工程之后,我在排行榜上名列第 219 名。

![{w:100%}{w:100}{w:100}{w:100}](/wiki/api/attachments.redirect?id=8b797f9b-ad23-4

由bigquant创建,最终由small_q更新于

111

102

# 在有序数组中找到出现最多的元素
def func() :
  num = arr[0]
  cnt = arr1
  maxNum = arr[0]
  maxCnt = 1
  
  for i in arr[1:]:
    if i == num :
      cn

由bqv4zl7q创建,最终由bqv4zl7q更新于

一文了解算法交易策略:类型、步骤、建模思路和实施

算法交易策略简单来说就是用计算机语言(如 Python)编码的策略,用于执行交易订单。交易者将这些策略编码,以利用计算机的处理能力,以更高效的方式进行交易,几乎不需要干预。

无论你是初学者还是经验丰富的交易者,跟随这个指南踏上算法交易策略的旅程。它旨在赋予你必要的知识,帮助你在交易中取得成功。

由small_q创建,最终由small_q更新于

量化交易员从哪里获得免费数据源

金融从业者和量化人员在日常工作里,常常迫切地需要获取金融实时报价、股票、指数、外汇等各类数据,而 API 已然成为他们不可或缺的得力工具,为数据获取开辟了便捷高效的通道。其中,实时报价 API 犹如市场的敏锐触角,能够让用户瞬间抓取到最新的市场价格信息,无论是股票的实时股价波动、指数的点位升降,还是

由bqm81hbn创建,最终由bqm81hbn更新于

AI+涨停板特征提取

策略简介

本策略是一个基本的StockRanker策略,使用的因子除了一些基本的量价指标、技术指标、财务指标之外,我们加入了涨跌停的因子,由于涨跌停price_limit_status这个字段的含义是等于1表示跌停、等于2表示非涨跌停、等于3表示涨停,因此我们将过去10日的涨跌停状态相加的话

由small_q创建,最终由bq7vztle更新于

夏普比率公式及使用技巧(含Python代码)

夏普比率(Sharpe Ratio)是衡量投资表现的一个指标,它通过比较投资的超额回报与其承担的风险来评估投资的性价比。由诺贝尔奖获得者威廉·夏普提出,是风险调整后的回报的一种度量。

通过BigQuant量化平台的[金融市场数据因子](https:

由bqw9z8tc创建,最终由small_q更新于

AI量化策略快速理解

导语

在上一篇文章中,大家对新建一个AI可视化模板策略有了初步的认识,但看到策略中众多的模块与看似复杂的连线心中不免存在疑惑,没关系,本篇文章中,我们就来为大家完整介绍一个AI量化策略的组成结构以及涉及的基本概念,希望可以帮助大家对AI量化策略建立一个全面初步的认识。


由clearyf创建,最终由small_q更新于

机器学习在量化投资中的趋势和应用

来源:SSRN 作者:Sophie Emerson, Ruairi Kennedy, Luke O’Shea, and John O’Brien

机器学习是人工智能的一个子领域,它使用统计技术为计算机模型提供从数据集学习的能力,允许模型在没有显示编程的情况下执行特定任务。近年来,机器学习技术激增,

由ftkj2018创建,最终由small_q更新于

量化投资的基本概念

什么是量化投资?

量化投资是指通过数量化模型建立科学投资体系,以获取稳定收益。 在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。在国内,量化投资不再是一个陌生的词汇,近几年得到了迅猛的发展。

提起量化投资,就不得不提量化投资的标杆—

由qxiao创建,最终由small_q更新于

投资策略有哪几种类型?包含哪些内容和方法

投资策略的类型多种多样,具体选择取决于投资者的投资目标和风险承受能力,下面介绍几种常见的投资策略类型。这些策略各有特点,适用于不同类型的投资者和市场环境。

  1. 价值投资策略:这种策略是基于购买那些市场价格低于其内在价值的股票。价值投资者通常会寻找价格被低估的公司,这些公司具有稳健的财

由bqw9z8tc创建,最终由small_q更新于

协方差矩阵和投资组合方差:计算和分析

什么是协方差矩阵?

协方差矩阵用于计算股票投资组合的标准差,投资组合经理又使用协方差矩阵来量化与特定投资组合相关的风险。在本文中,我们将学习如何为包含 n 个股票的投资组合创建为期“m”天的协方差矩阵。

\


投资组合分析如何运作?

让我们了解投资组合分析

由small_q创建,最终由small_q更新于

分页:第1页第2页第3页第4页第15页
{link}