Pandas基础操作技能get! 强烈推荐!
旧版声明
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
下列代码在读取数据时,使用最新dai.query接口即可。
[数据读取](https://bigquant.com/wiki/doc/dai
由ypyu创建,最终由qxiao更新于
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
下列代码在读取数据时,使用最新dai.query接口即可。
[数据读取](https://bigquant.com/wiki/doc/dai
由ypyu创建,最终由qxiao更新于
本文介绍了风险平价组合的理论与实践;后续文章将对risk parity组合进行更深入探讨以及引入预期收益后的资产配置实战策略。
由clearyf创建,最终由qxiao更新于
由ypyu创建,最终由qxiao更新于
本文介绍了因子模型、对冲以及Beta的相关内容,并针对如何进行市场风险对冲给出了具体的案例。
因子模型是通过其他若干项资产回报的线性组合来解释一项资产回报的一种方式,因子模型的一般形式是:
可以如何或
由ypyu创建,最终由qxiao更新于
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
下列代码在读取数据时,使用最新dai.query接口即可。
[数据读取](https://bigquant.com/wiki/doc/dai
由clearyf创建,最终由qxiao更新于
近年来,国内量化投资迎来了发展的黄金期,但涉及机器学习的量化投资还比较少。机器学习领域的大神Andrew Ng(吴恩达)老师曾经说过机器学习很大程度上就是特征工程,因此本文主要介绍下特征工程在量化投资领域的应用。
有这么一句话在业界广泛流传: *
由clearyf创建,最终由small_q更新于
在m2输入特征内修改
由bq5bun29创建,最终由small_q更新于
新版数据导入部分使用dai库
本节主要讲解Pandas库中 DataFrame 的数据查看与选择
Pandas 是基于 Numpy 构建的,让以 Numpy 为中心的应用变得更加简单。平台获取的数据主要是以 Pandas 中DataFrame 的形式。除此之外,
由qxiao创建,最终由qxiao更新于
SELECT date, open, high, low, close
FROM bar1d_CN_STOCK_A
WHERE instrument = '000005.SZA'
AND date BETWEEN '2017-01-06' AND '2017-02-10'
ORDER BY
由xiaoshao创建,最终由qxiao更新于
学习量化也有一段时间了,BigQuant平台与知乎可以说是我的主要学习战场了,一直在跟着BigQuant学院那个《AI量化训练营》学习,再从从知乎中寻找优秀文章进行补充,最终在平台进行实践,我觉的这样效率很高,我整理了知乎量化交易话题,及程序化交易、宽客、多因子模型等子话题中的精华帖,筛选了高赞的文
由qxiao创建,最终由qxiao更新于
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策 。(注:*
由iquant创建,最终由qxiao更新于
人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。
机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervise
由iquant创建,最终由qxiao更新于
AI量化指标的选择和排序取决于特定的投资策略、市场条件和数据可用性。
以下是30个常见的AI量化指标,按照一般在量化分析中的重要性排序:
由bqw9z8tc创建,最终由qxiao更新于
本文14323字,阅读约28分钟
导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。
1.人工智能量化投资概述
2.人工智能技术简介
3.机器学习在
由bqmesu0a创建,最终由qxiao更新于
机器学习已经成为量化策略设计中的一大利器,了解各种机器学习算法的原理、特点、优劣,对于量化建模有着极大的帮助。因此,本系列【专题研究】介绍几种在资本市场中非常流行的机器学习算法及其在选股方面的相应应用,希望能对大家有所帮助。
随机森林是当前使用最广泛的机器学习集成
由clearyf创建,最终由bqah4jb9更新于
阿尔法(Alpha)是衡量投资表现的金融指标,用于评估一项投资的表现是否超过了市场基准。在投资管理中,阿尔法代表了在考虑了市场波动性和投资风险后,投资相对于基准指数(如标准普尔500指数)的超额回报。BigQuant的[金融市场数据因子平台](htt
由bqw9z8tc创建,最终由bqw9z8tc更新于
最大回撤(Maximum Drawdown,简称 MDD)是衡量投资组合或资产在选定时间段内从峰值跌至谷底的最大损失百分比。它是一个重要的风险指标,用于评估投资的下行风险。最大回撤越大,意味着资产或投资组合的潜在损失越大。BigQuant的[金融市场
由bqw9z8tc创建,最终由bqw9z8tc更新于
阿隆指标由两条线组成:阿隆上行(Aroon Up)和阿隆下行(Aro
由bqw9z8tc创建,最终由bqw9z8tc更新于
(含相对强弱指数公式、使用技巧、Python代码、回测平台)
相对强弱指数(Relative Strength Index,RSI)是一种动量指标,用于分析股票的价格走势,以确定过度买入或过度卖出的条件。它是通过比较最近期间内的平均收益和平均损失来计算的。
[BigQuant](http
由bqw9z8tc创建,最终由bqw9z8tc更新于
(包含移动平均线公式及Python代码)
移动平均线(Moving Averages)是一种分析金融时间序列数据的基本工具,用于平滑价格数据以识别趋势。移动平均线主要有两种类型:简单移动平均线(SMA)和指数移动平均线(EMA)。
[BigQuant](https://bigquant.
由bqw9z8tc创建,最终由bqw9z8tc更新于
净资产收益率(Return on Equity,简称 ROE)是一种衡量公司盈利能力的财务指标,用来评估公司管理层使用股东资本的效率。
ROE可以表示公司能够从每单位股东权益中创造多少利润。
BigQuant的[金融市场数据因子平台](https
由bqw9z8tc创建,最终由bqw9z8tc更新于