Deep Residual Networks学习(二)
通过上次在Cifar10上复现ResNet的结果,我们得到了上表,最后一栏是论文中的结果,可以看到已经最好
由ypyu创建,最终由bqadm更新于
通过上次在Cifar10上复现ResNet的结果,我们得到了上表,最后一栏是论文中的结果,可以看到已经最好
由ypyu创建,最终由bqadm更新于
顾名思义,相对强弱指数 (RSI) 指标告诉我们资产的相对强弱。换句话说,RSI 告诉我们股票相对于自身的表现(或不表现)。RSI 被视为一种强大的技术指标,可用于分析市场,并且是交易者武器库的重要组成部分,因为它可以帮助他们在市场时机上做出更好的决策。当然,与其他指标一样,始终建议使用多个指标,因
由qxiao创建,最终由small_q更新于
金融交易世界中,获取准确及时的tick数据至关重要。抓住交易良机的关键在于掌握实时tick数据。数据更新越快,可发现的赚钱机会就越多。这也是为何在高频数据交易领域,tick数据备受重视。与传统的行情数据相比,tick数据提供了更细致的市场变化记录,为交易者提供了更全面的视角。
首先,让我们简单了解
由bqaaxiat创建,最终由dandelion4更新于
量化投资策略是利用数学模型和算法来分析市场并做出投资决策的方法。这些策略可以大致分为几个类型,每种类型都有其特点、适用人群和适用场景。以下是一些主要的量化投资策略类型:
由bqw9z8tc创建,最终由small_q更新于
本文将带你遍历机器学习领域最受欢迎的算法。系统地了解这些算法有助于进一步掌握机器学习。当然,本文收录的算法并不完全
由clearyf创建,最终由small_q更新于
几天前,我着手解决一个实际问题——大型超市销售问题。在使用了几个简单模型做了一些特征工程之后,我在排行榜上名列第 219 名。
 :
num = arr[0]
cnt = arr1
maxNum = arr[0]
maxCnt = 1
for i in arr[1:]:
if i == num :
cn
由bqv4zl7q创建,最终由bqv4zl7q更新于
算法交易策略简单来说就是用计算机语言(如 Python)编码的策略,用于执行交易订单。交易者将这些策略编码,以利用计算机的处理能力,以更高效的方式进行交易,几乎不需要干预。
无论你是初学者还是经验丰富的交易者,跟随这个指南踏上算法交易策略的旅程。它旨在赋予你必要的知识,帮助你在交易中取得成功。
由small_q创建,最终由small_q更新于
金融从业者和量化人员在日常工作里,常常迫切地需要获取金融实时报价、股票、指数、外汇等各类数据,而 API 已然成为他们不可或缺的得力工具,为数据获取开辟了便捷高效的通道。其中,实时报价 API 犹如市场的敏锐触角,能够让用户瞬间抓取到最新的市场价格信息,无论是股票的实时股价波动、指数的点位升降,还是
由bqm81hbn创建,最终由bqm81hbn更新于
本策略是一个基本的StockRanker策略,使用的因子除了一些基本的量价指标、技术指标、财务指标之外,我们加入了涨跌停的因子,由于涨跌停price_limit_status这个字段的含义是等于1表示跌停、等于2表示非涨跌停、等于3表示涨停,因此我们将过去10日的涨跌停状态相加的话
由small_q创建,最终由bq7vztle更新于
夏普比率(Sharpe Ratio)是衡量投资表现的一个指标,它通过比较投资的超额回报与其承担的风险来评估投资的性价比。由诺贝尔奖获得者威廉·夏普提出,是风险调整后的回报的一种度量。
通过BigQuant量化平台的[金融市场数据因子](https:
由bqw9z8tc创建,最终由small_q更新于
在上一篇文章中,大家对新建一个AI可视化模板策略有了初步的认识,但看到策略中众多的模块与看似复杂的连线心中不免存在疑惑,没关系,本篇文章中,我们就来为大家完整介绍一个AI量化策略的组成结构以及涉及的基本概念,希望可以帮助大家对AI量化策略建立一个全面初步的认识。
由clearyf创建,最终由small_q更新于
来源:SSRN 作者:Sophie Emerson, Ruairi Kennedy, Luke O’Shea, and John O’Brien
机器学习是人工智能的一个子领域,它使用统计技术为计算机模型提供从数据集学习的能力,允许模型在没有显示编程的情况下执行特定任务。近年来,机器学习技术激增,
由ftkj2018创建,最终由small_q更新于
量化投资是指通过数量化模型建立科学投资体系,以获取稳定收益。 在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。在国内,量化投资不再是一个陌生的词汇,近几年得到了迅猛的发展。
提起量化投资,就不得不提量化投资的标杆—
由qxiao创建,最终由small_q更新于
由qxiao创建,最终由bqui7n2l更新于
投资策略的类型多种多样,具体选择取决于投资者的投资目标和风险承受能力,下面介绍几种常见的投资策略类型。这些策略各有特点,适用于不同类型的投资者和市场环境。
由bqw9z8tc创建,最终由small_q更新于
协方差矩阵用于计算股票投资组合的标准差,投资组合经理又使用协方差矩阵来量化与特定投资组合相关的风险。在本文中,我们将学习如何为包含 n 个股票的投资组合创建为期“m”天的协方差矩阵。
\
让我们了解投资组合分析
由small_q创建,最终由small_q更新于
ATR即平均真实范围(Average True Range)是
由bqw9z8tc创建,最终由small_q更新于
\
简单来说,统计套利由一组量化驱动的算法交易策略组成。这些策略旨在通过分析价格模式和金融工具之间的价格差异来利用数千种金融工具的相对价格变动。统计套利起源于 1980 年代左右,由摩根士丹利和其他银行主导。统计套利策略,也被称为 StatArb,见证了金融市场的广泛应用。该策
由small_q创建,最终由small_q更新于
本文14323字,阅读约28分钟
导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。
1.人工智能量化投资概述
2.人工智能技术简介
3.机器学习在
由qxiao创建,最终由small_q更新于
量化交易利用数学和统计学方法来分析市场并执行交易的过程,是现代金融的一个重要组成部分。量化模型的目的是通过算法自动识别并利用市场中的规律和机会,用以获取更多收益。
是由ugene Fama和Kenneth French提出的,旨在更好地解释股票回报率的差异。
这个模型在原有的三因子模型基础上增加了两个因子,共包含以下五个因子:
计算公式应用参考:**[Fama-French五因子模型]
由bqw9z8tc创建,最终由small_q更新于
协方差是一个统计学的概念,用于衡量两个随机变量间的总体误差。它反映的是两个变量之间的相互关系以及它们如何一起变动。在金融领域,特别是在投资组合管理和风险管理中,协方差是一个非常重要的概念,因为它帮助投资者理解不同资产之间的价格变动关系,从而更好地分散风险。
![协方差概念图](/wiki/api
由bqw9z8tc创建,最终由small_q更新于
你是否曾经听到过人们谈论机器学习,而你却对其含义只有一个模糊的概念呢?你是否已经厌倦了在和同事对话时只能点头呢?现在,让我们一起来改变这个现状吧!
这篇指南是为那些对机器学习感兴趣,但又不知从哪里开始的人而写的。我猜有很多人曾经尝试着阅读机器学习的维基百科词条,但是读着读着倍感挫折,然后直接放
由qxiao创建,最终由small_q更新于